
Introduction

Meta-analysis is frequently used as a statistical me-
thod for combining information (results or data)
from several studies comparable in outcome and
exposure with the aim of increasing the study-
power and integrating the findings. 
Many meta-analytical works use aggregate data
(AD) and focus on the combination of published
summary statistics usually in the form of weighted
averages (1-5). Alternatively, individual patient data
(IPD) can be employed and their use is now con-
sidered the gold standard in meta-analytical

works (1, 6-7). IPD meta-analyses include more
detailed data, allowing accurate classification of
patients based on individual characteristics. Meta-
analyses of IPD also offer investigators the op-
portunity to examine uncommon exposures, rare
diseases, and variation in associations among po-
pulation subgroups with greater statistical power
than in individual studies (8). IPD are however co-
stly to be obtained.
In performing a meta-analysis, using both AD or
IPD, source of variation is a crucial point to con-
sider. This can be due at least to three different
aspects: sampling error, study-level characteristics
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(within-study variability) and between-study va-
riability or heterogeneity (8-9).
The sampling error measures the precision of the
study-specific estimate and derives from the use
of a sample instead of the all population. Uncer-
tainty due to study-level characteristics is the va-
riability in the patient responses within the primary
studies. Variation due to factors that vary across
the pooled studies results in heterogeneity. Dif-
fering design features, inclusion criteria, metho-
dological quality, clinical procedures, patient po-
pulation or characteristics and therapeutic sche-
mes or practices are all factors that can contribu-
te to such variability and should be investigated
(9). 
First of all, in performing a meta-analysis, expo-
sure, confounding, and outcome variables must be
standardized to remove potential sources of he-
terogeneity across studies. Afterwards, meta-
analysis can be undertaken by the use of fixed or
random effects models. 
Fixed effects models deal with sampling error and
uncertainty on study-level characteristics, assuming
that each study is measuring the same underlying
parameter, indeed assume no between-study va-
riability. Random effects models take into account
heterogeneity and, conversely to the fixed effects
models, assume that each study is associated with
a different but related parameter (9-10).
IPD meta-analyses can be tackled with two ap-
proaches: one and two-stage. The one-stage is a
fixed effect approach that considers the IPD poo-
led as one dataset and performs a single analysis
(1). Heterogeneity cannot be handled because the
investigated effect is assumed to be identical in
each study. On the other hand, in the two-stage ap-
proach studies are analyzed separately and then
summary statistics are combined using standard
meta-analytical random effect methods (1), as the
one developed by Der Simmonian and Laird (3). 
A review of 44 IPD meta-analyses published du-
ring the years 1999-2001 showed that 81% of the
meta-analyses for time to event data adopted fi-
xed effect models (1). Recently, some authors (6,
11-12) compared fixed and random effects models
for time to event IPD, anyway random effect mo-
dels remain not largely diffused (13).
This work examined and compared meta-analy-
tical techniques applied to time to event IPD from

a pooled dataset. Data from four different studies
on survival from Non-Hodgkin Lymphoma
(NHL) were used and the effect of tobacco smo-
king exposure on overall survival was investiga-
ted.

Material And Methods

A general framework for conducting IPD meta-
analyses entails identifying all studies meeting
identical inclusion criteria, obtaining each study’s
primary data, creating a standardized database, esti-
mating study-specific exposure-disease associa-
tions and examining whether the study-specific re-
sults are heterogeneous (8). Even if all these points
were faced, this work focused on comparing fixed
and random effect models for time to event indi-
vidual data, in investigating heterogeneity and in
calculating pooled estimates. 

Models for meta-analysis of primary data
Usually, models for meta-analysis on time to event
IPD refers to the standard Cox proportional hazards
regression model (model 0) (6, 11-13). The hazard
rate for individual i in the jth study at time t is gi-
ven by:

where: the covariates x
ij are the exposure or the con-

founding variables under study for individual i and
study j; the term λ

0
(t) is the baseline hazard fun-

ction for time since entry into the study t, that is
the time-dependent hazard when all the covaria-
tes are equal to zero; the coefficient βestimates the
log relative risk for a one-unite increase in the co-
variates and it is therefore a measure of the co-
variate effect. Model 0 assumes a multiplicative
relationship between the hazard function and the
log-linear function of the covariates (the propor-
tionality of hazards assumption).
Here, four meta-analytical models on time to event
IPD were identified. Model 1 is a fixed effect mo-
del, while models 2, 3 and 4 are random effect mo-
dels. 
In the fixed-effect Cox regression model stratified
by study (model 1) the baseline hazards λ

0(t) are
allowed to be different in each stratum j (study),
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but the covariate effect β is assumed to be the same
in all the strata (6, 12):

The disadvantage of this model is that we do not
get a simple summary estimate of the effect of the
stratifying variable. 
Random effect Cox models can model the hete-
rogeneity both in the baseline hazard and/or in the
covariate effect (8). Three different random effect
models were then identified depending on the va-
riables that model heterogeneity: the baseline ha-
zard, the covariate effect or both.
In the shared frailty model (model 2) heterogeneity
in the baseline hazard is taken into account (13).
In this case, a group-level frailty αj, that is an unob-
servable positive latent random effect, enters
multiplicatively on the hazard function or additi-
vely as intercept (β1j): 

The frailty effect αj measures the variation in stu-
dy-specific hazard after controlling for observed
variables. The frailty αj natural logarithm tran-
sformation is assumed to follow a Normal distri-
bution with 0 mean and variance τ 2, where the τ 2

represents the between-study variability on the ba-
seline hazard. A larger variance τ 2 implies grea-
ter heterogeneity across studies; a null variance τ 2

indicates no heterogeneity over studies. Many frail-
ty models have been considered depending on the
frailty distribution. Commonly applied frailty
distributions are the gamma distribution (14), the
positive stable distribution (15), a three-parame-
ter distribution (16), the compound Poisson di-
stribution (17) and the log-normal distribution (18).
In this work, the log-normal distribution was used
for consistency with the other following models.
In the covariate random effect model (model 3) he-
terogeneity in covariates is taken into account by
assuming that β varies randomly among studies
(j) (6):

where t1
2 represents the between studies variabi-

lity of the effects.

Heterogeneity both in the baseline and in the co-
variate effect was also modelled (model 4) com-
bining the shared frailty and the covariate random
effect models (6, 11, 19):

The terms τ 2 and τ 1
2 represent the between-study

variability on the baseline hazard and the hetero-
geneity of the effects over studies respectively.
All the models were sex and age-adjusted, con-
sidering these variables as confounders in each can-
cer survival analysis.
The partial penalized likelihood approach was used
to estimate parameters in the Cox models that in-
clude random effects (19).
Performance of all models was tested using a log-
likelihood ratio test (log-LRT) comparing the mo-
dels log-likelihoods L

1 with null model one L0 by
the use of the statistic 2(L

1-L0) distributed as a chi-
square with degree of freedom equal to the num-
ber of covariates (20).
Common methods to assess heterogeneity are the
Q-test (3) and the LRT (6). In this work the LRT
was used comparing the performance of the ran-
dom effect models with the corresponding fixed
effect model i.e. the same model with null between-
study variability: random effect model log-like-
lihood L

R
was compared with the corresponding

fixed effect model one (L
F) using the statistic 2(LR-

L
F) distributed as a chi-square with degrees of free-

dom equal to the number of added random terms. 
The R packages coxme and survival were used re-
spectively for the random effect meta-analysis and
for the other analyses (19-21). 

Application to NHL data
To examine meta-analytical techniques applied to
time to event IPD using the defined fixed and ran-
dom effects models, NHL survival data were
used. The NHL data refers to a subset including only
incident cases and ever smokers, selected from case-
control studies part of the InterLymph Consortium
(information about it are available at
http://epi.grants.cancer.gov/InterLymph/).  Data
from three Italian and one USA’s InterLymph case-
control studies (n=2618) were available. Table 1
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shows study-specific characteristics including to-
tal number of cases and number of the main frequent
NHL histotype (diffuse Large B cell Lymphoma,
DLBCL) (n=728). In each of the individual studies,
data were collected using trained interviewers, who
administered standardized, structured questionnaires
to study subjects. Consent was obtained from all par-
ticipant subjects in the different studies. Individual-
level information was collected. 
In this work, two survival analyses were carried
out: on all NHL cases and on a subgroup of NHL
cases classified as DLBCL histotype. A histoty-
pe analysis is a main epidemiological issue in NHL
survival because the survival pattern considerably
differs in respect to the histotype. For some ag-
gressive NHL histotypes the survival curves de-
cline rapidly in the early months following dia-
gnosis, but eventually levels off over time; this con-
trasts dramatically with that of some indolent lym-
phomas, where a gradual steady decline was ob-
served over the entire period of follow-up.
The analyses were carried out on a selected
group of NHL cases, i.e. ever smokers (current and
former smokers) (Table 1) studying the effect of
tobacco smoking on survival. The selection of ever
smokers arose from the results of a previous stu-
dy on a subset of cases from Italian multicentre
case control study. This study indicated that hea-
vy smokers had a worse survival compared with
those with a lower cumulative exposure to tobacco
smoking (22). 
In this work the tobacco smoking exposure was

referred to prior diagnosis and the lifetime tobacco
consumption was measured with the pack-year va-
riable, computed as number of cigarettes smoked
per day multiplied by number of years smoked di-
vided for 20 (1 pack has 20 cigarettes). In the ana-
lyses, the pack-year variable was multiplied by 10,
to better illustrate differences on hazard for in-
creasing levels of smoking consumption. The pack-
year is the covariate assumed to vary between stu-
dies in the random effect models.
As explorative analysis, the differences among stu-
dies on survival by smoking attitude were studied
with univaried Kaplan Meier analysis. Two smo-
king categories were defined on the basis of the cut-
off in pack-year category that was significantly as-
sociated to the risk of disease occurrence in an In-
terLymph aetiological pooled analysis (23): tho-
se who smoked less than 20 pack-years and tho-
se who smoked 20 or more pack-years. Moreover
the cumulative exposure of 20 pack-years corre-
sponded to the median of the distribution of our
data. Kaplan Meier curves were calculated for both
groups and Peto-Wilcoxon tests were applied to test
differences among study-specific survival curves. 

Results

Results of the preliminary explorative analysis to
investigate differences on survival among studies
are in Figure 1. The Kaplan-Meier five-years sur-
vival curves by study both for all histotypes and
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Table 1.  Study characteristics.

Study name Year(s) of diagnosis NHL Cases DLBCL histotype cases 
(abbreviation) (smokers) (smokers)

Aviano/Aviano-Milan
(Aviano) 1983–1992 / 1999–2002 353 (203) 114 (61)

Italian multicentre case-control study
(Italy) 1991-1993 1624 (959) 434 (258)

Nebraska NHL Study
(Nebraska) 1983-1986 383 (195) 91 (52)

EPILYMPH – Sardinia
(Sardinia) 1999-2004 258 (167) 89 (63)

Total 2618 (1524) 728 (434)



for DLBCL histotype resulted different among stu-
dies (Peto-Wilcoxon p<0.0001, for all histotypes
and for DLBCL histotype). 
In Figure 2 are the Kaplan-Meier five-years sur-
vival curves both for all histotypes and for
DLBCL by smoking group. There were significant
differences in survivals among studies in both smo-
king categories for all histotypes (Peto-Wilcoxon
test p= 0.0108, for 20 or less pack-years and
p=0.0195 for more than 20 pack-years smoked),
as well as for DLBCL histotype analysis (Peto-Wil-
coxon p= 0.0166, for 20 or less pack-years and
0.0389 for more than 20 pack-years smoked). 
We applied the four models to study the tobacco
smoking effect on NHL survival. A model with the
study x1ij as a covariate was initially considered,
however that model did not verified the propor-
tional hazard assumption and it was excluded from
these analyses. Model performances were tested
with the log-LRTs (Table 2). All the investigated
models significantly better fit the data respect to
the null one both in all histotypes and in DLBCL
histotype analysis. All the random effect models
(model 2, 3, 4) better performed respect to the fi-

xed effect one (model 1): there is an improvement
in likelihood going from the Cox stratified model
to all the random effect models. Considering the
performance of the random effect models, the mo-
del 2 and the model 4 showed a very similar LR
hence no improvement was associated to the to-
bacco smoking random effect. This was confirmed
by a lower LR value for model 3 respect to mo-
del 2 and 4.
The log-LRTs were applied also to investigate he-
terogeneity: models with random effect terms were
compared with the corresponding fixed effect mo-
dels (Table 3). 
Both for all NHL histotypes and for DLBCL hi-
stotype, models 2 and 4 showed a statistically si-
gnificant improvement in LR respect to the cor-
responding fixed effect models: the random effect
terms were significantly different from zero in-
dicating the existence of between study variabi-
lity.
Model 3 had a different behaviour between the all
histotypes and the DLBCL analyses. In the all hi-
stotypes analysis model 3 did not show an im-
provement in LR respect to the corresponding fi-
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Figure 1. Kaplan-Meier five-years survival curves both for all histotypes and only for DLBCL histotype by study.
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xed effect model: the random component was not
significantly different from 0. On the contrary, in
the DLBCL analysis, a weak improvement was ob-
served by adding the random effect, i.e. the ran-
dom component of the tobacco smoking covariate
was significantly different from 0.
Heterogeneity was also explored by analyzing the
variances of the random terms (Table 4). Varian-
ce values were not negligible for the random in-
tercept i.e. the effect associated to the baseline ha-
zard. Variance values for the tobacco smoking ran-
dom term were smaller than those for the intercept. 
The variance of the tobacco smoking random ef-
fect in the all subtypes analysis decreased from mo-

del 3 to model 4 i.e. by adding the random inter-
cept parameter, while the opposite was observed
in the DLBCL analysis. However these variances
values were so small than their contrasting beha-
viours could be not meaningful.
The tobacco smoking hazard ratios (HRs) were
also computed. Figure 3 shows the forest plot for
the HRs estimates obtained by applying the Cox
model (model 0) to each study and applying the
four meta-analytical models to the pooled data. The
reported HRs refers to all histotypes analysis sin-
ce the same results were observed in the DLBCL
analysis. When data were pooled, all the investi-
gated models reported a statistically significant to-

Figure 2. Kaplan-Meier five-years survival curves both for all histotypes and only for DLBCL histotype by study and smok-
ing group.
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bacco smoking HR, confirming an increasing ha-
zard risk with a ten-unit increasing of smoking cu-
mulative exposure. The HR pooled estimates
and their confidence intervals were very similar,
differing only in decimals, whichever model was
applied to the NHL data. As expected, the varia-
bility of the pooled HRs was reduced respect to
the single studies ones.

Discussion

This work aimed to examine and compare fixed
and random effect models for meta-analysis of sur-
vival IPD: a fixed effect model (model 1) and three
different random effect models (model 2, 3, 4) were
defined on the basis of the Cox regression model. 
By way of example, the models were applied to
survival data of NHL cases, focusing on tobacco
smoking exposure. Only tobacco smoking, as pro-
gnostic factor, and age and sex, as confounding va-

riables, were studied because uniformly collected
and measured in all the studies. This work is just
a starting point for further analyses designed to exa-
mine the prognostic value of various factors on
NHL survival making use of an extended database
including more studies. 
The preliminary univariate analysis showed some
differences in survival from NHL, observed both
by study and by study and smoking group (figu-
res 1 and 2). These differences could be due to he-
terogeneity among studies; such heterogeneity was
investigated, measured and eventually explained
by applying random effect models.
Variation in the investigated effect may be due to
differences in baseline functions between studies
i.e. at the population level, or may arise from the
effect itself, i.e. the covariate may have a different
prognostic effect in some studies than in others
(12). There are at least two possible ways to cap-
ture this heterogeneity: by attributing it to the sin-
gle covariates as well as to the baseline hazard. The
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Table 3. Log-likelihood ratios tests results: statistics (LR) with the corresponding p-values (p) and degrees of freedom (df). 

All histotypes DLBCL histotype

Model LR P LR P df

model 2 9.19 0.0024 7.57  0.0059 1
model 3 0.17 0.6753 4.47   0.0344 1
model 4 9.19 0.0100 7.57 0.0226 2

Table 4. Between-study variability on the baseline hazard (τ2) and on the tobacco smoking effect (pack-year) over studies
(τ1

2) in models 2, 3 and 4. 

Model Random terms All histotypes DLBCL histotype

model 2 τ2 (intercept) 7.37 10-2 1.46 10-1

model 3 τ1
2 (pack-year) 1.52 10-14 3.08 10-3

model 4 τ2 (intercept) 7.37 10-2 1.47 10-1

τ1
2 (pack-year) 5.21 10-10 3.39 10-6

Table 2. Log-likelihood ratios tests results: statistics (LR) with the corresponding p-values (p) and degrees of freedom (df). 

All histotypes DLBCL histotype

Model LR P LR P df

model 1 79.7 <0.0001 29.80 <0.0001 3
model 2 93.42 <0.0001 40.66 <0.0001 4
model 3 84.40 <0.0001 37.56 <0.0001 4
model 4 93.42 <0.0001 40.67 <0.0001 5



three random models examined in this work dif-
fered in the choice of the parameters allowed to
vary randomly with studies. In the shared frailty
model (model 2) variability between studies is cap-
tured in the baseline hazard function by including
in the model a random parameter explicitly ac-
counting for the baseline between-study variabi-
lity. In this case the baseline parameter varies ran-
domly among studies but no variability is attributed
to the covariates. 
The covariate random effect Cox model (model 3)
is adopted when the variability between studies ari-
se from the investigated effect itself, i.e. the effect
under study varies randomly among studies. In this
model, the lone tobacco smoking effect was as-
sumed to vary randomly, consequently all the he-
terogeneity was assumed to be held in the pack-
year variable. 
The model 4 is assumed when the variability bet-
ween studies arises in both covariate and baseli-
ne parameters: this model should capture the gre-
at part of heterogeneity. 
Apart from modelling techniques, the key issue of

a meta-analytical analysis is to assess heteroge-
neity. This consists in identifying an eventual he-
terogeneity and, in the IPD analysis, in finding va-
riables explaining such heterogeneity. Larger is the
amount of the explored and explained heteroge-
neity and larger is the relevance and the scienti-
fic value of the meta-analytical analysis (11).
The stratified Cox model (fixed effect model 1) al-
lows estimating the pooled covariate effect taking
into account study-specific baseline hazards. The
pooled tobacco smoking HR from model 1 is not
dissimilar respect to the ones from the random ef-
fect models (figure 3). However, model 1 does not
allow measuring the heterogeneity, which is a ma-
jor limitation for meta-analysis. Fixed effect mo-
dels may therefore be used once the absence of he-
terogeneity has been proved.
The use of random effect models is frequently ai-
med to the only heterogeneity analysis. This be-
cause a gain of efficiency of random effect models
respect to the stratified models has been proved
to be largest when moderate or large numbers of
small groups of two or three patients, as in mul-
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Figure 3. Forest plot for the smoking HR obtained by applying model (0) to each study and applying the four models to the
pooled data.
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ticenter trials, were used in the analysis (24). In
addition, in many applications the estimates of the
effects under study seemed not to vary significantly
by using fixed or random models.
Results from the application of the meta-analyti-
cal models to our NHL dataset showed a better per-
formance of the random effect models respect to
the fixed effect models (table 2). In addition the
comparison of the random effect models with the
corresponding fixed effect ones by log-LRTs
(table 3) highlighted that both the models (models
2 and 4) with the random effect related to the in-
tercept (the baseline) better performed than the cor-
responding fixed effect models. The model 2 (sha-
red-frailty) was preferable since it gained in the
number of degree of freedom respect to model 4.
These findings suggested that definitely, hetero-
geneity occurred in our NHL data and that basi-
cally, this heterogeneity was captured when the ba-
seline hazard function was allowed to vary ran-
domly with studies. This heterogeneity, not ex-
plained by covariates, is named residual hetero-
geneity and should always be explored (9, 25).
The main interest when exploring heterogeneity
in meta-analytical survival analyses is to assess he-
terogeneity in the investigated effects across stu-
dies, rather than just heterogeneity in baseline fun-
ctions. Katsahian et al. (11) asserts that models that
do not incorporate heterogeneity in the investigated
effects should only be used in case of substantial
evidence of homogeneity of the effects between
studies. In fact, Katsahian et al. (11) demonstra-
ted that models without random covariate effect
perform poorly in case of heterogeneity in the in-
vestigated effects; on the other hand, models with
random covariate effect, respect to model without,
performed worse in case of absence of heteroge-
neity in the investigated effects. Our findings of
a not considerable difference in the performance
of the model 2 compared to the model 4, confirm
Katsanian et al.’s (11) assertions.
Anyway a contrasting behavior in the two diffe-
rent histotype analyses was observed considering
model 3. When the all histotypes analysis was per-
formed, the model with the random tobacco
smoking effect did not better perform than the cor-
responding fixed effect one, suggesting a homo-
geneous tobacco smoking effect on NHL survival
among studies. When the only DLBCL cases were

considered, model 3 showed a slightly better per-
formance respect to the corresponding fixed effect
model (table 3: LRT p=0.03). The same results
were observed by examining the values of the to-
bacco smoking random effect variances (t1

2) that
measured the amount of investigated heterogeneity
(table 4). Presumably, our results indicated that the
investigated heterogeneity was not attributable to
a different study-related effect of tobacco smoking
on NHL survival; rather it seemed to be linkable
to the differences among study-populations. This
residual heterogeneity might be further explained
by adding new factors to the survival analysis. Any-
way, a minor amount of heterogeneity due to a stu-
dy-different tobacco smoking prognostic value ap-
peared when a subgroup of DLBCL cases was iso-
lated. This could be attributed to a well-known ho-
mogeneity in survival trends for sub-groups of the
same histological diagnosis. The different survi-
val trends by histotypes could have influenced the
heterogeneity assessment in the all histotype
analysis.
In all the models of this work the age and sex co-
variates were always included. This is because a
recent study suggested that individual patient co-
variates could influence overall results in case of
not large datasets (12). The latter evaluated the ef-
fect of including patient-level covariates on he-
terogeneity in a cancer survival meta-analysis of
about 11000 subjects. The authors found a limi-
ted influence on the estimates of the investigated
effect but a reduction in the confidence intervals,
explained by the large dataset leading to balanced
covariates between studies. 
Covariate-interactions were not considered in
this work since we did not evidence heterogeneity
in the covariate effect.
Finally, a concept to be mentioned is checking of
model assumptions that is an important issue with
the use of proportional hazard models (11). As an
example, in this application an additional model
with the study as a covariate was initially consi-
dered: since the proportional hazards assum-
ption was not satisfied, this model was excluded
from analyses. To be noticed that methods for chec-
king PH assumption are not yet implemented for
random effect models in all statistical packages.
The NHL application afforded the original goal to
investigate and apply alternative models to un-
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dertake a meta-analysis of time to event IPD. Mo-
reover the availability of patient level information
provided a straightforward possibility for explo-
ring heterogeneity. We assessed the effect of to-
bacco smoking on survival from NHL, however
in this work we did not try to draw conclusions on
survival hazards. The aim was not to investigate
the effect of prognostic factors on NHL survival,
neither to explain heterogeneity since no stan-
dardized information was available for other
confounding variables or known prognostic fac-
tors. The availability of multiple covariates as well
as the evaluation of covariate-interactions could
partially explain heterogeneity. As Tudor Smith and
Williamson (25) assert, one major advantage of
IPD is the ability to investigate potential causes
of heterogeneity by exploring covariate-interac-
tions. When more studies will be available and
more variable will be collected, a further analy-
sis will be addressed to this topic. 
In conclusion the comparison of meta-analytical
models and the implementation of random effect
models, that are not commonly applied to IPD
turn out to be simply implemented, even if on a
small number of pooled studies. Moreover the
random effects models were found to perform bet-
ter than fixed effect ones, and the component
found to capture the larger amount of between-
study variability in our application was the ba-
seline hazard. 
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