
1. Introduction

By way of introduction, suppose two collaborators are
interested in the possible genetic contributions to di-
sease X. Investigator 1 has her favourite gene G, which
is the only gene she is investigating, whereas inve-
stigator 2 has no a priori hypotheses about genetic con-
tributors. Also suppose that genome-wide SNP data
are available. Investigator 1 examines the association
between disease X and gene G and observes positi-
ve evidence, with a p-value of 0.001, which she in-
terprets as “strong” evidence. Investigator 2 exami-
nes association between disease X and each of
550,000 genetic markers; he observes positive evidence

of association with that same gene G, and with the
same p-value of 0.001, but he interprets this as only
“weak” evidence.
This simple example illustrates how the same eviden-
ce can lead to different conclusions, – “strong” vs.
“weak” in the above example – and thus provides an
intuitively appealing example of the multiple testing pro-
blem, one we see often in human genetics. This situa-
tion leads us into logical paradoxes and inconsistencies.
However, thinking about statistical evidence in a dif-
ferent way – from the perspective of the “evidential”
paradigm – can help resolve these paradoxes. In this
brief paper we illustrate these principles with genetic
examples.
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Summary
In this paper, (1) we review what the statistical “multiple testing problem” is, for example, as it applies to genomewide link-
age or association analysis of human genetic diseases. (2) Then we describe a different paradigm for statistical inference –
the “Evidential” paradigm, as developed and advocated by R. Royall. A feature of this paradigm is that one decouples the
measure of evidence from the error probabilities, and we explain what is meant by each of the italicized terms. (3) We show
how the core root of the multiple testing problem is precisely the confounding of error probabilities with evidence measures.
Thus, the Evidential paradigm, since it separates those two concepts, can help us deal with the multiple testing problem in
a more logically consistent way.
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2. Evidential Paradigm

The fundamental feature and appeal of the “evidential”
paradigm, in the context of multiple testing, is that it
“decouples” “measures of evidence” from “error pro-
babilities.” In the next three subsections, we explain
what we mean by each of these terms – measures of
evidence (Sec. 2.1), error probabilities (Sec. 2.3), and
decoupling (Sec. 2.3).

Measures of Evidence
We define the “likelihood ratio” (LR) as our measure
of evidence, where the LR is defined as the likeliho-
od ratio between two simple hypotheses, namely,

The likelihood is technically defined as “proportional
to probability” up to a multiplicative constant [1]. The
point is that the ratio of likelihoods between two sim-
ple hypotheses indicates which hypothesis is better sup-
ported by the observed data. If the data we observe are
more rare (i.e., much more “surprising”) under one hy-
pothesis than another, then the LR reflects that fact. This
is explicitly stated by the well-known Law of Likeli-
hood [2-3].
For a simple example, imagine that across the hall from
your office is a lab that is shared by two colleagues, Amy
and Robert. When either one is working there alone,
that person listens to music on the radio. If Amy is the-
re alone, she listens about half the time (50%) to clas-
sical music, and 50% to jazz, whereas Robert greatly
prefers jazz, which he chooses 98% of the time, liste-
ning to classical music only 2% of the time. You come
in to work one morning and hear classical music co-
ming out of the lab. Which colleague is more likely to
be in the lab? The answer of course is Amy, because
the observation of classical music is much less rare or
surprising if Amy is there than if Robert is there. A for-
mal analysis could proceed as follows: 

H
1: Amy is in lab, vs. H0: Robert is in lab. 

This value of 25 for the LR can be interpreted as, “The
Amy hypothesis is 25 times ‘more likely’ than the Ro-
bert hypothesis,” or, equivalently, “The observation of
classical music is 25 times ‘less surprising’ if the Amy
hypothesis is true than if the Robert hypothesis is true.”

These concepts form, indirectly, the basis of every sta-
tistical test or procedure and are explicitly integral to
genetic linkage studies. Here is an example from lin-
kage analysis. The goal is to determine whether the di-
sease locus of interest is “linked” to a known marker
locus. By “linked” we mean that the disease and mar-
ker loci are located on the same chromosome and are
reasonably close together. We measure the distance bet-
ween any two loci by what is called the recombination
fraction (usually denoted θ). From biology we know
that a value of θ = 0.5 corresponds to independent as-
sortment (Mendel’s Second Law) and thus represents
lack of linkage, whereas values of θ < 0.5 represent lin-
kage. In current genetic research, we usually work with
smaller values of θ, such as θ < 0.1 and even θ < 0.01,
since we currently have so many markers available in
the human genome. Thus, we might set up these two
hypotheses:

H0: θ = 0.5 (i.e., no linkage) vs. H1: θ = 0.05.
The corresponding likelihood ratio is:

As a simple example, say we had observed a family with
10 children, none of them representing recombination
from the parents. If H1 is true, the likelihood (proba-
bility) of 10 nonrecombinant children is given by the
probability of a single nonrecombinant (1−θ, i.e., 0.95),
raised to the 10th power, i.e., (.95)10. In contrast, under
the null hypothesis of no linkage, that probability is sim-
ply one-half raised to the 10th power, or (.5)10. Thus the
ratio of these two probabilities, the LR is

This says that the hypothesis of linkage with θ=.05 is
613 times more likely than hypothesis of no-linkage.
Another way to express this is that it would be 613 ti-
mes “more surprising” or “more rare” to observe this
family if there is no linkage than if there is linkage with
θ = 0.05.
For convenience, geneticists work with the logs of the
LRs, rather than the LRs themselves. The lod score is
defined as Lod(θ) ≡ log10(LR for that value of θ). In the
above example, Lod(θ=.05) = log10(613.1) = 2.79.
To use the LR as a measure of evidence, we need to set
some criterion or cutoff value that will represent con-
vincing evidence favouring one hypothesis over ano-
ther. To that end, we choose a value of “k” (where 
k > 1) and agree that a LR ≥ k represents “strong” evi-
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dence in favor of H1, and that LR ≤ 1/k represents
“strong” evidence in favor of H0. If the LR falls bet-
ween those two values, that represents “weak” evidence.
Possible values of k could be 8, 32, 100, 1,000, and each
of these has some historical or scientific application.
Traditionally in linkage analysis, a Lod score of 3.0 (i.e.,
LR of 1,000) has been to taken to constitute proof of
linkage.

Error probabilities

But if we are to accept using the LR as an evidence mea-
sure, we need justification. How does this measure of
evidence behave? A reliable measure of evidence is one
that leads users to draw incorrect conclusions with low
probability (i.e., one that has good operating charac-
teristics). Royall [4] has shown that the LR has this pro-
perty, even if we choose relatively small values of k (e.g.,
k = 32).
To show this, define error probabilities, as follows: First,
say H0 is true (no linkage). There are three possible out-
comes for our data: 
• If LR ≥ k, that is a “misleading” outcome, so the

probability of this happening, P[LR ≥ k|H0], is an
error probability, which we want to minimize.

• If LR ≤ 1/k, that is an outcome that leads to the cor-
rect conclusion. We call this a “correct” or “strong”
outcome, and we want to maximize the probabili-
ty, P[LR ≤ 1/k|H0], that this will happen.

• What if the LR fall between those two values, i.e.,
1/k < LR < k? This represents an inconclusive out-
come; i.e., the data do not give us a clear answer
in either direction. We refer to this as a “weak” out-
come. It is not exactly an “error” situation, since it
does not lead us to an incorrect conclusion, but we
still want to minimize its probability, i.e., P[1/k <
LR < k|H0].

Similarly, if H1 is true (i.e., there is linkage or
association), we define the same three outcomes, but
now the interpretations are reversed:
• P[LR ≤ 1/k |H1] is an error probability, which we

want to minimize.
• P[LR ≥ k|H1] is the probability that the data lead us

to the correct conclusion, so we want to maximi-
ze it.

• P[1/k < LR < k|H1] is still the probability of weak
evidence and should be minimized.

These probabilities are functions of three quantities:
sample size; the choice of alternative hypothesis; and

the criterion, k. The error probabilities can be controlled
by adjusting these values. 
These error probabilities are analogous in principle to
the more standard frequentist error rates [5]. For
example, P[LR ≥ k|H0] mentioned above is analogous
to type I error in the classical paradigm, and P[LR ≥
k|H1] is analogous to power. However, we specify and
use them differently. Briefly, in the classical paradigm,
one collects data, and then one interprets the p-value
in a dual role as being both an error probability and a
measure of evidence. In contrast, in the evidential pa-
radigm, one specifies a desirable level of strength of
evidence (k), then designs one’s experiment to main-
tain acceptable error probabilities. However, after
collecting the data, one does not look at the error pro-
babilities any more, but only at the evidence. The er-
ror probabilites are relevant only for planning.
To give a homely example: If the weather report in the
morning says there is a 75% chance of rain, you decide
whether or not to take your umbrella to work, based on
that prediction. However, once you’ve left the house and
the day progresses, all that matters is whether it is or
is not raining. The 75% prediction is no longer relevant.
Work by Royall [4] analyzes magnitudes of error pro-
babilities when we set k at different values, when we
vary the alternative hypothesis, and when we control
sample size, which can be used to control error. To be-
gin, for a given value of k, the error probability can-
not exceed 1/k, for both P[LR ≥ k|H0] and P[LR ≤1/k|H1].
This means that if one uses a value of k = 32, those er-
rors have an absolute upper bound of 1/32, or ≈0.03.
But further, in many cases, with reasonable sample si-
zes, the maximum value for these probabilities ap-
proaches a value much lower than that, namely 
Φ(–√⎯2ln k) for k = 32, this value is ≈0.0043. In other
words, even k as low as 32 can result in very low er-
ror probabilities for reasonable sample sizes. (These re-
sults apply for simple situations such as outlined here
and need to be modified for more complex situations;
see also [6-7].)
Since it is relatively easy to keep the probability of mi-
sleading evidence low, users of the Evidential Paradigm
should focus on lowering the probability of weak evi-
dence, which they can do by a reasonable combination
of choosing the alternative hypothesis (H1) carefully,
not setting k too high, and increasing sample size.
Our own work [6-7] applies these findings to the spe-
cific context of linkage analysis. For example, testing
θ = 0.05 vs.θ = 0.50 in a sample of 20 sib pairs, and
using k = 32 as the criterion, the error probabilities are
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only 0.0013 when H0 is true, 0.0018 when H1 is true.
In other work we have also applied these principles to
association analysis [8, 9]. The reader is referred to tho-
se papers for more details.

Decoupling

“Decoupling” means that conceptually we separate the
“error probabilities” from the “measure of evidence.”
Concretely, this means that we first design our expe-
riment to have acceptable error probabilities. But
then, after collecting data, we look only at the measure
of evidence, and we do not try to make one quantity
serve both functions.
Contrast this approach with that of classical hypothe-
sis testing, where the p-value is used as both an error
probability and a measure of evidence. The p-value is
technically defined as the “probability of observing re-
sults this deviant or more from H0, if H0 is true.” Ho-
wever, then this same quantity, the p-value, is also used
as measure of evidence: Investigators commonly say
such things as, “a p-value of .04 is acceptable but not
very strong evidence, whereas a p-value of .0001 is
strong evidence,” and so on.
There are many reasons why the p-value is not in fact
a good measure of evidence. Here we give just one sim-
ple example; for more detailed discussions, see [10, 11].
Example. Say we are testing whether a coin is fair vs.
it has “heads” on both sides. Let q represent the pro-
bability of a head on a single toss. Then we can for-
mulate H0: q = ½, vs. H1: q = 1. Now say we toss the
coin 10 times, and observe “heads” 9 times, “tails” once.
Under H0: this is a rare event, with corresponding p-
value = 0.011. [The p-value in this case equals the pro-
bability, under the null hypothesis, of nine heads, plus
the probability of all 10 heads, i.e., 10(.5)10 + (.5)10 =
0.011]. So if we went by the p-value alone, we would
reject the null hypothesis, since p < 0.05. On the other
hand, if H1 is true, this outcome is not simply rare, it
is impossible. Thus, given the choice between the two
hypotheses, we must choose H0, for, as Sherlock
Holmes says, “How often have I said to you that when
you have eliminated the impossible, whatever re-
mains, however improbable, must be the truth?” (quo-
ted in [1]).
To summarize, the Evidential Paradigm requires that
one uses the LR as a measure of evidence, knowing that
error probabilities can be kept small, and that one se-
parates (“decouples”) the measure of evidence from the
error probabilities.

3. Back to the Multiple Testing
Problem

We maintain that the root of the problem is precisely
what was discussed above, namely, confounding the er-
ror probability with the measure of evidence. We ar-
gue that the advantage of “decoupling” is that it lets us
consider the multiple testing problem more logically
and consistently.
In the classical paradigm, one runs into the kinds of pa-
radoxes alluded to in the Introduction, namely, that it
is reasonable to say this: “In a linkage analysis, a like-
lihood ratio of, say, 1000:1 at locus X is taken to represent
different evidence, depending on whether we analyzed
only locus X; or we analyzed ten candidate loci, inclu-
ding X; or we analyzed X as part of a genome scan of
thousands of loci”. However this violates common sen-
se. Surely the evidence for linkage remains 1000 to 1
in all three situations. What we should be concerned
about is that the error probability may differ in these dif-
ferent situations, not that the evidence may differ.
Expressing the concern in statistical terms: Even
though the error in any one test is small, when one per-
forms multiple tests, the probability that at least one of
these tests has made an error may be large. To express
this more precisely, statisticians define the Family-
Wise Error Rate: 

FWER = P[at least one test yields LR ≥ k | H
0]

Then, rather than controlling only the error probabili-
ty of a single test, they try to control this FWER. Ho-
wever, since they use the p-value in the dual role of er-
ror probability and measure of evidence, when they con-
trol the error probability they are perforce “controlling”
the evidence as well.
In contrast, with the Evidential paradigm, one decouples
the error probability from the evidence measure. If one
has to adjust the error probability to ensure that it is small
across multiple tests, one does so; but the evidence is what
it is and should not be “modified” or “corrected.”
If nothing else, considering the multiple testing para-
dox from the perspective of the evidential paradigm,
as we have outlined here, improves the clarity and pre-
cision of thought and of language on this difficult sub-
ject. However, one can go further: One can break down
the multiple testing problem into two separate situations
and say something quantitative about both. Full details
are in [7]; here we give a broad outline of these two si-
tuations (also see [4] and [12]).
We call the first situation “multiple tests of a single hy-
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pothesis”. This is the situation in which investigators
examine data as they go along, then potentially collect
more data, depending on what has been observed so far.
It is a sequential approach, and it is in fact what scien-
tists do, both in linkage analysis and in most fields of
biomedical research. For this situation one can show
rigorously that it is legitimate to keep collecting data
until the LR gives a clear result, one way or the other.
The resultant error probabilities are somewhat higher
than they would be for a single test, but they still re-
main below reasonable upper bounds.
The second situation involves a “single test of of mul-
tiple hypotheses”. This refers to the familiar situation
of, for example, genome scans, in which one analysis
(linkage or association) is performed, but that one ana-
lysis represents a large number of hypotheses, one for
each genetic locus being tested. In this situation the-
re is no absolute upper bound on error probabilities, so
more care must be taken. In [7] we explore ways to use
sample size to control error probabilities, and we work
out efficient ways to use replication as a way to con-
trol error probabilities.
As an aside, we note that replication is nothing new;
many investigators have argued: “Don’t be overly con-
cerned about the p-values; focus more on replication.”
Our work puts that intuitive reaction on a sound logi-
cal footing, using the Evidential paradigm.
In summary, we advocate handling the “multiple testing
problem” by using the likelihood ratio as a measure of
evidence and separating (decoupling) the measure of
evidence from the error probabilities. This approach ena-
bles investigators to deal with the multiple testing pro-
blem more logically and consistently, by separating what
they do with the evidence from what they do with the
error probabilities.
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