
Introduction

In observational studies without random assignment of
treatment, unadjusted Kaplan–Meier survival curves
may be misleading due to confounding. Therefore, some
researchers have discussed the need to adjust survival
curves for confounding (1–4). To produce adjusted sur-
vival curves, Cole and Hernán (3) and Xie and Liu (4)
used an inverse probability weight (IPW), defined as
the inverse of the probability of an individual subjec-
t’s receiving a specific treatment or exposure on the mea-
sured covariate vector.
In actual observational studies, both unmeasured and
measured confounders may be present. In such situa-
tions, adjusted Kaplan–Meier survival curves may also
be misleading due to unmeasured confounding. Al-
though analyses cannot be conducted to adjust for un-

measured confounding, it is important to quantitatively
evaluate its potential impact. Therefore, we propose a
sensitivity analysis of unmeasured confounding for ap-
plication to survival curves.

Methods

Calculations used X as an exposure indicator and as-
sumed the now-standard deterministic potential-outcome
model, in which Y

X=1 and Y
X=0 are the potential outco-

me indicators under X = 1 and X = 0, respectively (5,
6). This model is currently used in several textbooks
(7–9). The expectations of potential outcomes E(Y

X=1)
and E(Y

X=0) are then the expectations of Y, if the enti-
re study population is exposed to or administered a fac-
tor (X = 1) and if the entire study population is not ex-
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Abstract
Objectives. Kaplan–Meier survival curves adjusted for confounders have been presented based on the use of inverse prob-
ability weights. However, in observational studies, some confounders may not be measured. In these situations, it is impor-
tant to evaluate the potential impact of unmeasured confounding quantitatively. Here, we propose a simple method for sen-
sitivity analysis of adjusted survival curves using the inverse probability weights.
Methods. We derived inverse probability weights, in which confounding risk ratios used as sensitivity parameters for un-
measured confounding were included. Using the weights with some plausible values for sensitivity parameters, a sensitiv-
ity analysis was performed.
Results. The proposed method of sensitivity analysis was applied to observational study data. The results demonstrate that
this new method can be applied to adjusted survival curves without complex computer programming.
Conclusions. The proposed sensitivity analysis has the disadvantage of using sensitivity parameters as measures of risk as
opposed to focusing on time to event. Nevertheless, the method is simple to perform and will aid researchers in evaluating
the potential impact of unmeasured confounding on the Kaplan–Meier survival curves.
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posed to or administered a factor (X = 0), respective-
ly. Causal effects are contrasts between these two ex-
pectations. It should be noted that the observed outcome
Y is equal to the potential outcome YX=x whenever X =
x. Hence, E(Y | X = x) = E(YX=x | X = x).
In the following sections, we first review the IPW me-
thod for adjusting binary or continuous outcomes, which
has increasingly been used to adjust for confounding.
Next, the adjusted Kaplan–Meier survival curves for
measured confounding are reviewed. Finally, we pro-
pose a new method of sensitivity analysis for the in-
fluence of unmeasured confounding on Kaplan–Me-
ier survival curves.

The IPW method

Informally, the IPW method approaches adjustment for
confounding by multiplying the IPW by each subject
i (i = 1, …, n), where the weight is equal to the inver-
se of the probability of an individual subject’s recei-
ving a specific treatment or exposure X on the measured
covariate vector Z. The probability is often calculated
using a logistic regression model; i.e., the logistic mo-
del of Z on X is fitted, and the predicted probabilities
Pr(X = xi | Z = zi) are estimated from the fitted model.
These probabilities are used to calculate the weights wi

= Pr(X = xi | Z = zi)
–1. For example, a weight of 1.2 for

an individual is interpreted to indicate that 1.2 descri-
bes the number of subjects with the same background
as the individual’s own. Once this manipulation has been
performed for all individuals, a pseudo-population is
created. In this pseudo-population, the covariates are
unrelated to exposure.
The IPW estimates are yielded from the following
forms:

[1]

[2]

In a simple manner, effect measures are calculated from
marginal structural models (10–12); i.e., weighted re-
gression analysis using wi

= Pr(X = 1 | Z = z
i
)–1 for the

exposed subjects and wi
= Pr(X = 0 | Z = z

i
)–1 for the

unexposed subjects as the weights. Note that these

weights correspond to the inverses of the denominators
of equations [1] and [2], respectively. The causal dif-
ference between the exposure groups is produced by
a weighted linear regression model, and the causal risk
ratio (RR) is produced using a weighted Poisson re-
gression model when the outcome is binary.

Adjusted survival curves with IPW

Using IPW to produce adjusted survival curves is ge-
nerally based upon using such weights to control for
confounding (11). A weighted Cox proportional hazard
regression model accounts for confounding variables
using the covariate vector, whereby the weights are the
estimated IPWs. With this method, the robust varian-
ce estimator (13) is used to estimate valid variances un-
der the null hypothesis and to provide conservative con-
fidence intervals (CI). A short SAS (14) program il-
lustrating this method has been reported elsewhere (3).

Sensitivity analysis 
of unmeasured confounding

Our revised methodology uses two confounding risk
ratios (CRRs) (15) within the ith stratum, defined as
the ratio of the crude RR to the causal RR, as the sen-
sitivity parameters. The first CRR pertains to the ex-
posed group as the standard population, whereas the
second CRR pertains to the unexposed group as the stan-
dard population. These CRRs are formalized as α

i
and

β
i
using the following formulas:

These sensitivity parameters are applied in the context
of the sensitivity analysis of unmeasured confounding
for causal RR (16, 17).
It is important to note that both αi and βi can be regarded
as bias factors, defining the sign of bias due to un-
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measured confounding (18, 19). Using the RR for the
exposed group as the standard population, when αi >
1 for all i, the RR adjusting for only measured con-
founders is larger than the true RR. This situation oc-
curs when both the unmeasured confounder–outcome
relationship and the unmeasured confounder–exposu-
re relationship are either positive or negative. Con-
versely, αi < 1 for all i implies that the RR adjusting
for only measured confounders is smaller than the true
RR. This situation occurs when the unmeasured con-
founder–outcome relationship and the unmeasured con-
founder–exposure relationship have opposite signs. No
bias due to unmeasured confounding exists when αi =
1. β

i
is also interpreted for the RR in a similar manner,

with the unexposed group as the standard population.

It is difficult to use α
i
and β

i
in a sensitivity analysis,

as the number of sensitivity parameters is equal to the
number of subjects. Thus, we assume that the values
of sensitivity parameters are equal for all individuals;
i.e., α�α1 = … = αn and β�β1 = … = βn. When un-
measured confounding is taken into account, using the-
se sensitivity parameters, the following weights can be
employed in place of w

i
= Pr(X = x

i
| Z = z

i
)–1:

[3]

[4]

The IPW estimators take the following forms in the case
of a binary outcome:

[5]

[6]

When no unmeasured confounder exists, α= β = 1 and
equations [5] and [6] are consistent with equations [1]
and [2], respectively. The derivations of equations [5]
and [6] are presented in the Appendix.
The sensitivity analysis is conducted using a weighted
Cox proportional hazard model incorporating weights
[3] and [4] in place of w

i
= Pr(X = x

i
| Z = z

i
)-1. In this

analysis, the plausible ranges ofαand β are determined
prior to performing the sensitivity analysis, and some va-
lues within the ranges are examined. The next section
demonstrates the application of this sensitivity analysis.

Results

The proposed sensitivity analysis is illustrated using data
from an observational study comparing disease-free sur-
vival (DFS) for 76 patients with Ewing’s sarcoma (1).
In this study, 47 patients received a novel treatment (S4),
while the remaining 29 patients received one of three
standard treatments (S1–S3). We use data reported by
Cole and Hernán (3). Figure 1 presents the unadjusted

Sensitivity analysis for adjusted survival curves
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Figure 1. Unadjusted survival
curves for 76 patients with
Ewing’s sarcoma 
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survival curves for treatment S4 versus S1–S3. The
unadjusted Cox proportional hazard model yields a ha-
zard ratio (HR) of 0.534 (95% CI: 0.299, 0.955). This
unadjusted analysis suggests that the S4 treatment was
beneficial for reducing the risk of Ewing’s sarcoma re-
currence in comparison with the S1–S3 treatment.
In addition to the data on time to recurrence and the pre-
sence of censoring, we can use serum lactic acid de-
hydrogenase (LDH) data that have been dichotomized
into < 200 and ≥ 200 international units. LDH is an en-
zyme that is thought to be related to tumor burden and
that is regarded as a strong predictor of tumor recur-
rence. Therefore, LDH is considered a confounder. Fi-
gure 2 displays the survival curves with IPW adjusted
for LDH. The adjusted Cox proportional hazard mo-
del with IPW yields a HR of 1.110 (robust 95% CI:
0.739, 1.668). The adjusted analysis with IPW suggests
that investigators should not conclude that a differen-
ce exists between the S4 and S1–S3 treatments in the
risk of recurrence of Ewing’s sarcoma.
In general, age and performance status are also strong
risk factors of DFS for patients with sarcoma and should
be considered confounders in this study. However, the-
se factors must be regard as unmeasured confounders,
as there are no data pertaining to these factors. Thus, it
is important to quantitatively evaluate the potential im-
pact of unmeasured confounding on DFS. Therefore, the
proposed sensitivity analysis was applied to these data.
The ranges of sensitivity parameters α and βwere esta-
blished as 1/3 ≤α ≤ 3 and 1/3 ≤ β ≤ 3. These ranges were
not based on any particular rationale, but CRRs (sensi-
tivity parameters) are generally regarded as possibly not

being very large compared with the ratio of the adjusted
HR to the crude HR (1.110/0.534 = 2.079). Thus, the up-
per limit of sensitivity parameters was set as 3, and the
lower limit was set as the inverse. The HRs were cal-
culated by applying some values of α and βwithin the-
se ranges. The results of these analyses are presented in
Table 1. The HR had the largest value when (α, β) = (1/3,
3) and the smallest value when (α, β) = (3, 1/3).
Figure 3 displays the Kaplan–Meier survival curves
when ( α, β) = (1/3, 3) and (3, 1/3). Figure 3(a) shows
the most harmful outcome of treatment S4 under (α,
β) = (1/3, 3), where the HR is 1.584 (robust 95% CI:
1.184, 2.120). Conversely, Figure 3(b) displays the most
beneficial outcome under (α, β) = (3, 1/3), where the
HR is 0.782 (robust 95% CI: 0.475, 1.287). The results
of sensitivity analysis demonstrate, at minimum, that
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Table 1. Hazard ratios generated using some values of α and
β within 1/3 ≤ α ≤ 3 and 1/3 ≤ β ≤ 3.

Figure 2. Survival curves for
76 patients with Ewing’s sar-
coma adjusting using IPW 
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treatment S4 is not beneficial in comparison with tre-
atments S1–S3, even when unmeasured confounding
variables are taken into account.

Discussion

We have proposed a sensitivity analysis of unmeasured
confounding for Kaplan–Meier survival curves with ad-
justment for measured confounding. One limitation of
this sensitivity analysis is that sensitivity parameters are
measures of “risk” even though they are applied to sur-
vival analysis; i.e., there is a focus on “time-to-event”
analysis. This situation may pose a challenge to the in-
terpretation of sensitivity parameters. As observed for
equations [5] and [6], Pr(Y

X=1 = 1) becomes smaller as
α becomes larger, and Pr(YX=0 = 1) becomes larger as β
becomes larger. Therefore, the causal RR becomes smal-

ler as both α and β become larger. However, these re-
lationships may not hold for survival curves and HRs.
For example, as can be seen in Table 1, the present ana-
lyses showed that the HR became smaller as α became
larger and β became smaller. Conversely, the HR beca-
me larger as α became smaller and β became larger. The-
se observations imply that it may be more appropriate
to use sensitivity parameters related to time-to-event data
rather than the sensitivity parameters presented here,
which are related to risk. Nevertheless, the proposed sen-
sitivity analysis has the advantage that it is extremely sim-
ple to perform. Specifically, investigators using the SAS
program can perform such an analysis following only
trivial revision to the SAS program presented as adju-
sted survival curves for measured confounders (3).
Performing a sensitivity analysis using the methods pro-
posed here can assist researchers in explorations of the
potential impact of unmeasured confounding. A sen-

Sensitivity analysis for adjusted survival curves
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Figure 3. Sensitivity analysis of the
survival curves for patients with
Ewing’s sarcoma. (a) The most
harmful result of the S4 treatment
(α = 1/3 and β = 3), and (b) the most
beneficial result of the S4 treatment
(α = 3 and β = 1/3). 
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sitivity analysis should be performed to evaluate the in-
fluence of unmeasured confounders on study results.

Appendix

In this appendix, we derive equations [5] and [6]. Pr(YX=1

= 1) is transformed as follows:

Therefore, once 1 + Pr(X = 0 | Z = zi
)/{α

i
Pr(X = 1 | Z

= z
i
)} is calculated and α

i
is replaced by α, then Pr(Y

X=1

= 1) becomes equation [5]:

Likewise, Pr(Y
X=0 = 1) is transformed as

Therefore, once 1 + βiPr(X = 1 | Z = zi)/Pr(X = 0 | Z =
zi) is calculated and βi is replaced by β, then Pr(YX=0 =
1) becomes equation [6]:
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