
Introduction
Comparing a numeric variable among two or more
groups is one of the most common problems in bio-
medical statistics. In general, a statistic for location
is compared, and the emergence of statistical signif-
icance leads to findings of interest to the biomedical
community. 
For the purposes of this paper, we will focus on the
extremely simple and most common situation: that of
two groups. 
The t-test is used for comparing means, but it relies
on normality. It is well known that the t-test is robust
to small departures from the normality assumption,
and that it becomes distribution-free as the sample
size n grows.
A possible alternative is the Mann-Whitney test (1, 2),
which does not require any normality assumption, and
is deemed to compare medians (this is not strictly true
but we will assume that it is for the time being).
Even though these two tests very often lead to the
same conclusions, there are situations in which they
can contradict each other. 
As an example, let us consider recent data (3) docu-

menting the effects of total or partial parathyroidec-
tomy on serum levels of calcium, phosphate and
parathyroid hormone (PTH) in dialysis patients. The
sample comprised n = 77 patients, with no losses to
follow up in the first year. 
First, we compute the standardized difference be-
tween PTH levels before and one month after sur-
gery. These standardized levels are compared be-
tween the 36 patients undergoing total removal of the
thyroid and the 41 undergoing only partial removal.
With the Mann-Whitney test statistic a p-value of
0.0013 is obtained. This p-value indicates that there
is a differential effect of the kind of surgery on PTH
serum levels, i.e. that total surgery leads to lower lev-
els of PTH in blood after one month (median, -1.91
vs -1.71). On the other hand, were we to use the t-
test, a p-value of 0.101 would be obtained, leading us
to declare that there is no significant difference be-
tween the means of -1.70 and -1.50. This is related to
the strong skewness of the standardized difference.
We note that the Levene test for homogeneity of vari-
ances is not rejected with a p-value of 0.4117.
The reverse can often occur, i.e. the t-test leads to re-
jection but nonparametric testing does not. 

BIOMEDICAL STATISTICS AND CLINICAL EPIDEMIOLOGY 2008; 2 (1): 57-69 57

Parametric assumptions in single and multiple
testing: when should we rely on them?

Alessio Farcomeni
“La Sapienza” University of Rome, Italy

Corresponding Author:
Alessio Farcomeni

Department of Experimental Medicine, “Sapienza” University of Rome
P.le Aldo Moro 5, 00185 Rome, Italy
E-mail: alessio.farcomeni@uniroma1.it

Summary
Testing for difference in location among two or more groups is an everyday problem in data analysis. Parametric (normal-
ity) assumptions are often taken for granted without much investigation. In single inference this may be a negligible issue
if the sample size is large enough and, when necessary, a suitable transformation is applied to the numeric variable. In this
paper we argue that the normality assumption should almost always be withdrawn in the complex setting of multiple test-
ing. We support the claim with a small simulation and a case study on microRNA profiling of human medulloblastoma.  

KEYWORDS: t-test, Mann-Whitney test, multiple testing, nonparametric inference, ranks.

TESTATINA



We argue that the choice of the test should be made
before seeing the outcome. Otherwise, if the two
tests contradict each other, use of the significant one
is data snooping and inflates the actual level of the
test. 
In our experience, the choice of test (when this is
considered) is often driven by the habits of the data
analyst, the type of test traditionally used in the bio-
medical sector for which the data analysis is being
done, and only sometimes by a careful exploration of
the normality of the continuous variable. We argue
that even the last of these approaches is not always
sensitive, and that in many applications it cannot
even be performed. Further, normality is often as-
sessed simply by eye-balling a histogram. This can
be misleading in that distributions with heavy tails
can easily be mistaken for normal distributions.
The main task of this paper is to explore, via a case
study and a small simulation, the practical differ-
ences in opting for the route of t-testing versus
Mann-Whitney. We will not consider, for the time
being, the effects of transformations designed to
make the t-test more grounded on the normality as-
sumption. We are interested primarily in the effects
of this choice in multiple testing, that is, when two or
more tests are performed at the same time. Whereas
when just a single test is performed parametric and
nonparametric methods may lead to the same conclu-
sions, when many tests are performed at the same
time the outcomes may easily not coincide, as we
will see below. 
While tests for difference in location among popula-
tions have been used for many decades, the topic of
this paper is of current interest due to the increasing-
ly frequent need to use these tests in applications in
which (i) the sample size is small, so that normality
cannot be tested and the central limit theorem (CLT)
will not necessarily hold, and (ii) the number of si-
multaneous tests of the same nature is high. These
two factors (small sample size, use of a vector in-
stead of just a single p-value) combine to make mul-
tiple testing different from the single test situation.
Furthermore, in applications such as gene identifica-
tion in DNAmicroarrays, some outliers can often be
included in the data, which makes the t-test possibly
unreliable. 
Applications of tests for locations in multiple testing
include identifying neuronal activity in the living

brain (4-7), and the identification of differentially ex-
pressed genes in DNA microarray experiments (8-
13). There is a plethora of other situations in which it
is common for many tests to be performed at the
same time, in bioinformatics, psychometrics (14),
epidemiology (15), pharmacology (16), etc. 
Many of these applications have arisen recently, pos-
ing new kinds of multiplicity problems and stimulat-
ing a tremendous interest and fast developments in
multiple hypothesis testing. We have recently re-
viewed this aspect (17). 
Our final claim will be that the t-test, in the previous-
ly discussed situations, may be frequently put aside
in favour of its nonparametric counterpart. 
In this paper, following a discussion of the applica-
tion of location comparisons in multiple inference
situations, and a brief background on multiple test-
ing, our simulation studies will be presented, fol-
lowed by a case study analysing original data on
gene discovery.

Testing difference in location between
two groups
The t-test is a standard approach used to verify the
difference between the means of two normally dis-
tributed populations with the same but unknown
variances. In practice, the difference in mean is com-
pared to the experimental variability (the standard er-
ror) and if it is large enough with respect to differ-
ences that can reasonably be expected to be produced
by chance, the null hypothesis that the two means are
equal is rejected. 
The data must come from a normally distributed
population. It is customary, if necessary, to use a
Box-Cox transformation (for instance, taking the
logarithm) in order to improve the approximation to
normality. When the sample size n is sufficiently
large one can use the CLT to assume that the sample
average x– is approximately normally distributed. In
that case, the true data generating distribution is not
an issue. The main problem is that when n is small
the distributional assumption cannot even be veri-
fied: common techniques for assessing normality
(like histograms, q-q plots, or formal tests like the
Kolmogorov-Smirnov) are not useful and the CLT
cannot be invoked. In these situations one does not
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know whether the data are normal or not, and the
safest route is to use tests for location which are dis-
tribution-free. 
A simple alternative to t-testing is the Mann-Whit-
ney statistic, which is based on ranks. The entire sam-
ple is ranked, and the ranks of one of the two groups
are summed. The final Mann-Whitney statistic is

, or equivalently 
, where Ri1 are the ranks of

the first (arbitrarily chosen) group, and n1 is the sam-
ple size of the first group. From the U statistic p-val-
ues are easily computed. In the case of small samples
the distribution is tabulated, but for samples above
about 20 the approximation is good using the normal
distribution. 
In practice, the order of the two groups is compared
without taking into account the actual numerical dif-
ferences. If the groups are separated, as in the case of
Example 1 in Table 1, then it is obvious that there is
a difference in location, and in fact the U statistic
will be exactly zero if A is chosen as first group, and
n1n2 if it is chosen as the second. It is straightforward
to check that n1n2 is the maximum possible value for
U. If the groups are mixed, as in the case of Example
2 in Table 1, then one can expect the two groups to
come from the same population. 
The Mann-Whitney is thus intuitive, simple, and dis-
tribution-free (to derive conclusions about medians,
it only assumes that the two distributions have the
same shape apart from the tested shift). Furthermore,
unlike the t-test, it is invariant with respect to mono-
tone transformations, it can be used to compare loca-
tions of categorical ordered variables, and it is much
less sensitive to spurious outliers. However, there are
drawbacks. The most important is that if the data are

truly normal, it is asymptotically about 4.5% less ef-
ficient than the t-test (to be precise, (π – 3) / π). This
is exacerbated in very small sample situations: in
Table 2 we show the minimum p-value that can be
realized as a function of sample size, with n1 being
the sample size for the first group, and n2 the sample
size for the second group. The minimum p-values in
Table 2 are the p-values obtained if the two groups
are perfectly separated. It can be seen, in practice,
that with as few as three observations per group, the
test will never reject at level α = 0.05 or lower, no
matter what the true shift. To reject the null hypoth-
esis at level α = 0.05 with a Mann-Whitney test at
least four observations per group are needed, and
five for significance at level α = 0.01. In unbalanced
situations, an even larger total sample size is needed.
We note that with t-testing, two observations per
group suffice to achieve arbitrarily small p-values.
In real situations there can be a moderate overlap be-
tween the groups due to volatility or small dimension
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VAR Example 1 Example 2

0.05 A A
0.10 A B 
0.12 A A
0.15 A B 
0.20 A A
0.40 A B 
1.90 B A
2.00 B B 
2.30 B A
2.35 B B 
2.40 B A
2.50 B B 

Table 1. Example data with separated groups (Example 1)
and with mixed groups (Example 2) (data are ordered with
respect to variable VAR).

n2

n1 2 3 4 5 6 7 8 9 10

2 0.333 0.200 0.133* 0.095** 0.071** 0.056** 0.044** 0.036** 0.030**
3 0.100 0.057* 0.036** 0.024** 0.017** 0.012** 0.009** 0.007**
4 0.029* 0.016** 0.009** 0.006** 0.004** 0.003** 0.002**
5 0.008** 0.004** 0.002** 0.002** 0.001** 0.001**
6 0.002** 0.001** 0.001** 0.000** 0.000**

Abbreviations and symbols: n1 = sample size for the first group; n1 = sample size for the second group; * = significant at level α = 0.05,
** = significant at level α = 0.01.

Table 2. Minimum p achievable with Mann-Whitney as a function of sample size.



of the effect (i.e., small difference in location), which
makes observed p-values even higher. To give an
idea, Table 3 gives the p-value that is achieved in the
situation in which groups are perfectly separated ex-
cept for one single observation from the second
group being below the minimum in the first group. 

The case of multiple testing
Let us consider a multiple testing situation in which m
tests are being performed. For each test, significance
is assessed via a p-value, which can arise from any
kind of test. While the methods for multiple testing ap-
ply in the same way in all cases, the choice of error
rate, correction, and test can affect power strongly.
In the usual (single) test setting, one controls the prob-
ability of false rejection (Type I error) while looking
for a procedure that possibly minimizes the probabili-
ty of observing a false negative (Type II error).
In the multiple case, despite the small probability of
each uncorrected level α test falsely rejecting the null
hypothesis, as m increases the total number of false
discoveries will obviously increase dramatically. Cor-
rections are needed to control specific Type I error
measures. There are various functions of false positive
counts that can serve as possible generalizations of the
probability of Type I error. Control of the chosen Type
I error rate can be loosely defined to be achieved when
the error rate is bounded above by a pre-specified α,
which usually is fixed at 0.05, 0.01 or 0.1. 
More formally, let us suppose M0 of the m null hy-

potheses are true, and M1 are false. Table 4 shows the
possible outcomes in testing m hypotheses: we de-
note with R the number of rejections, with N01 and
N10 the exact (unknown) number of errors made af-
ter testing, and with N11 and N00 the number of cor-
rectly rejected and correctly retained null hypothe-
ses. 

A classical multiple Type I error rate is the family-
wise error rate (FWE), i.e. the probability of a least
one Type I error: 

FWE = Pr (N10 ≥ 1).

The FWE can be controlled with the famous Bonfer-
roni correction, simply by rejecting only the hy-
potheses corresponding to p-values below α / m.
There are many improvements that can be made to
the Bonferroni, mainly resulting in data-dependent
cut offs given by step-down or step-up procedures. 
In step-down procedures the p-values are compared
in order, from smallest to largest, with a rank-specif-
ic cut-off. Once a p-value is greater than its cut-off,
the corresponding hypothesis is not rejected, and nei-
ther are all those higher than it. Step-up procedures
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n2

n1 2 3 4 5 6 7 8 9 10

2 1.0000 0.8000 0.5333 0.3810 0.2857* 0.2222* 0.1778** 0.1455** 0.1212**
3 1.0000 0.7000 0.4000 0.2500 0.1667* 0.1167* 0.0848** 0.0636** 0.0490**
4 1.0000 0.6286 0.3429 0.1905 0.1143* 0.0727* 0.0485** 0.0336** 0.0240**
5 1.0000 0.5714 0.2857 0.1508 0.0823* 0.0480* 0.0295** 0.0190** 0.0127**
6 1.0000 0.5476 0.2571 0.1255 0.0649* 0.0350* 0.0200** 0.0120** 0.0075**  
7 1.0000 0.5167 0.2303 0.1061 0.0513* 0.0262* 0.0140** 0.0079** 0.0046**  
8 1.0000 0.4970 0.2141 0.0932 0.0426* 0.0205* 0.0104** 0.0055** 0.0031**  
9 1.0000 0.4818 0.1986 0.0829 0.0360* 0.0164* 0.0079** 0.0040** 0.0021**  
10 1.0000 0.4685 0.1878 0.0753 0.0312* 0.0136* 0.0062** 0.0030** 0.0015**  

Abbreviations and symbols: n1 = sample size for the first group; n1 = sample size for the second group; * = significant at level α = 0.05,
** = significant at level α = 0.01.

Table 3. p-value with Mann-Whitney as a function of sample size with second group above first except for one single ob-
servation, which corresponds to the minimum value.

H0 not rejected H0 rejected Total

H0 True N00 N10 M0

H0 False N01 N11 M1

Total m – R R m

Table 4. Outcomes in testing m hypotheses.



are similar. The p-values are examined from the
largest to the smallest. Once a p-value is found to be
smaller than its rank-specific cut-off, the correspon-
ding hypothesis is rejected, together with all the
smaller ones.
Since the significance of one hypothesis is related
not only to its corresponding p-value but also to the
p-values of all the other hypotheses, small changes in
the p-value vector may cause the number, and list, of
rejected hypotheses to vary wildly. These changes
can be due to many factors, one of which is the
choice between parametric and nonparametric tests
for computing p-values. 
In this paper we will use Holm’s step-down method
(18) for controlling the FWE. Holm’s step-down
method starts by fixing the step-down constant 
α / (m – j + 1), that is, the j-th p-value is compared
with α / (m – j + 1) in a step-down fashion. This
controls the FWE at level α.
Control of the FWE guarantees that with high prob-
ability the list of rejections will be free of false rejec-
tions. All rejections can thus be expected with high
probability to be true findings. This is a very interest-
ing feature for practitioners, but it has a drawback. In
fact, when the number of tests is large (for instance,
in the order of the thousands), FWE control can be-
come overly conservative, basically resulting in a
disappointingly low number of rejections. For this
reason, Benjamini and Hochberg (19) suggest using
a more liberal error measure known as the false dis-
covery rate (FDR), which can be defined as the ex-
pected proportion of the number of erroneously re-
jected hypotheses to the number of rejections, if any.

Control of the FDR turns out to give a much better
balance between false rejections and number of cor-
rect rejections (that is, power) when m is large. Sim-
ulation studies comparing FWE and FDR control are
reviewed elsewhere (17). 
FDR at level α can be controlled using Benjamini
and Yekutieli’s approach (20), which fixes the step-
up constant: . 

The proposed corrections, (Holm’s step-down and
Benjamini and Yekutieli’s step-up) control the corre-
sponding Type I error rate in finite samples and with
arbitrary dependence among the p-values. The only
requirement is that the p-values be valid, so that there
is no bias as could be present when the t-test is ap-
plied to a variable far from normality. A detailed re-
view on statistical methods for multiple testing can
be found elsewhere (17).

Simulations
We simulate data from three distributions: a stan-
dard normal distribution, a t-distribution with three
degrees of freedom, and an exponential distribution
with rate equal to 1. In all cases we add a constant
shift of δ to the second group, and simulate in the
balanced n1 = n2 situation. The t3 distribution is
heavy tailed but symmetric, and would very likely
be recognized as normal by any user judging nor-
mality from a histogram. The exponential is highly
skewed.
We generate B = 5000 data sets and record the out-
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α = 0.01 α = 0.05
n1 = n2 δ βT βMW IT=MW βT βMW IT=MW

5 0.20 0.99 0.99 1.00 0.95 0.97 0.98  
10 0.20 0.98 0.99 0.99 0.92 0.93 0.98  
20 0.20 0.98 0.98 0.99 0.91 0.91 0.97  
50 0.20 0.94 0.95 0.98 0.83 0.84 0.96  
100 0.20 0.88 0.88 0.97 0.71 0.72 0.94  
5 2.50 0.35 0.41 0.83 0.08 0.14 0.92  
10 2.50 0.01 0.01 0.99 0.00 0.00 1.00  
20 2.50 0.00 0.00 1.00 0.00 0.00 1.00  
50 2.50 0.00 0.00 1.00 0.00 0.00 1.00  
100 2.50 0.00 0.00 1.00 0.00 0.00 1.00  

Table 5. Probability of Type II error for Student’s t-test (βT) and Mann-Whitney test (βMW), and proportion of simulated data
sets where they show agreement for different n and different δ under normality. Nominal error levels: α = 0.01 and α = 0.05.



come of each of the two tests. In Tables 5, 6 and 7
we show the results for different n1 and δ in the sin-
gle test settings. β denotes the proportion of data
sets for which the test is not rejected at level α. This
is the Type II error rate (1-power) whenever δ > 0.
By IT=MW we mean the proportion of data sets for
which the two tests lead to the same decision.
As expected, under normality (Table 5) the t-test is
more powerful in all cases, but the two tests substan-
tially agree. The lower bound for the proportion of
times they agree is 0.83, with the lowest sample size
(=5) and largest δ (=2.5). So, not much of an im-
provement is obtained by assuming normality when
this is uncertain, given that the Mann-Whitney test
performs more or less the same as the t-test under
normality. On the other hand, when the data are not
normal (Tables 6 and 7), the Mann-Whitney test is

more powerful and the two tests can agree with low-
er probability (as low as 69%).
We now turn to the multiple testing situation. For
reasons of space we report results only for α = 0.05.
We generate data sets for testing m hypotheses, 10%
of which are false nulls with a difference in location
of δ. We report the actual value of the controlled
Type I error measure, and the average number of true
rejections (N– 11) for each kind of test, together with
the proportion of simulations (over B = 1000) in
which the two tests lead to the same list of rejected
hypotheses. The results are presented in Tables 8, 9,
and 10.  
Under normality, irrespective of the controlled error
measure, use of the t-test often but not always leads
to higher power. The difference in power is rarely
substantial though, reaching a maximum of around
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α = 0.01 α = 0.05
n1 = n2 δ βT βMW IT=MW βT βMW IT=MW

005 0.20 1.00 0.99 0.99 0.97 0.97 0.97  
010 0.20 0.99 0.99 0.99 0.95 0.94 0.97  
020 0.20 0.98 0.98 0.99 0.93 0.92 0.96  
050 0.20 0.97 0.96 0.97 0.90 0.87 0.93  
100 0.20 0.96 0.93 0.95 0.86 0.80 0.89  
005 2.50 0.65 0.62 0.85 0.39 0.38 0.89  
010 2.50 0.25 0.19 0.90 0.11 0.06 0.93  
020 2.50 0.06 0.01 0.95 0.02 0.00 0.98  
050 2.50 0.01 0.00 0.99 0.00 0.00 1.00  
100 2.50 0.00 0.00 1.00 0.00 0.00 1.00 

Table 6. Probability of Type II error for Student’s t-test (βT) and Mann-Whitney test (βMW), and proportion of simulated da-
ta sets where they show agreement for different n and different δ under t3-distributed data. Nominal error levels: α = 0.01
and α = 0.05.

α = 0.01 α = 0.05
n1 = n2 δ βT βMW IT=MW βT βMW IT=MW

005 0.20 0.99 0.99 0.99 0.96 0.95 0.97  
010 0.20 0.99 0.97 0.98 0.93 0.91 0.96  
020 0.20 0.98 0.94 0.97 0.90 0.83 0.91  
050 0.20 0.94 0.85 0.90 0.82 0.65 0.82  
100 0.20 0.87 0.64 0.76 0.70 0.40 0.69  
005 2.50 0.31 0.29 0.88 0.10 0.19 0.91  
010 2.50 0.03 0.03 0.97 0.01 0.01 0.99  
020 2.50 0.00 0.00 1.00 0.00 0.00 1.00  
050 2.50 0.00 0.00 1.00 0.00 0.00 1.00  
100 2.50 0.00 0.00 1.00 0.00 0.00 1.00

Table 7. Probability of Type II error for Student’s t-test (βT) and Mann-Whitney test (βMW), and proportion of simulated da-
ta where they show agreement for different n and different δ under exponentially distributed data. Nominal error levels:
α = 0.01 and α = 0.05.



10% ([58-48]/M1, where M1 = 100) with m = 1000, n
= 10 and δ = 2.5. When the true data generating dis-
tribution is not normal, as expected the Mann-Whit-
ney performs better than the t-test, with a difference
in power that can be substantial. 
Most important, irrespective of the error measure
and true data distribution, the two tests can dis-
agree, even almost never showing the same list of
rejected hypotheses. This problem, which does not
arise in the single inference situation, is more and
more present as the number of tests m grows. As
can be appreciated from Table 9, using the t-test
with a symmetric but heavy tailed distribution
leads to overly conservative control of the FWE.
Again, this does not arise  in the single inference
situation. 
As a final remark, it can be noted that use of the Ben-

jamini-Yekutieli procedure for FDR control is con-
servative (the true Type I error rate is much lower
than the nominal). This is well known. Still, the Ben-
jamini-Yekutieli procedure is the only one that con-
trols the FDR under arbitrary dependence for any fi-
nite sample size, and therefore the only one that can
be blindly used in applications. 

A real data example: MicroRNA
profiling in human medulloblastoma
Medulloblastoma (MB) is the most frequent brain
malignancy observed in childhood and originates
from aberrant development of cerebellar progenitor
neurons. 
MB multimodal treatments (surgical resection,
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t-test Mann-Whitney t-test Mann-Whitney
m n δ FWE N– 11 FWE N– 11 IT=MW FDR N– 11 FDR N– 11 IT=MW

0020 010 0.20 0.041 000.013 0.040 000.015 0.98 0.010 0v0.006 0.010 000.007 0.99  
0020 020 0.20 0.049 000.022 0.044 000.023 0.97 0.010 000.009 0.013 000.008 0.99  
0020 050 0.20 0.043 000.085 0.042 000.072 0.95 0.012 000.033 0.009 000.029 0.97  
0020 100 0.20 0.043 000.168 0.041 000.153 0.92 0.014 000.087 0.009 000.075 0.96  
0020 010 2.50 0.048 002.909 0.046 002.858 0.91 0.011 002.874 0.009 002.786 0.89  
0020 020 2.50 0.049 003.000 0.050 003.000 0.98 0.012 003.000 0.012 003.000 0.98  
0020 050 2.50 0.044 003.000 0.045 003.000 0.98 0.011 003.000 0.011 003.000 0.98  
0020 100 2.50 0.039 003.000 0.033 003.000 0.97 0.010 003.000 0.008 003.000 0.97  
0250 010 0.20 0.040 000.007 0.032 000.006 0.96 0.004 000.002 0.009 000.001 0.99  
0250 020 0.20 0.038 000.021 0.030 000.018 0.97 0.000 000.006 0.000 000.005 1.00  
0250 050 0.20 0.032 000.075 0.027 000.064 0.94 0.006 000.020 0.005 000.014 0.99  
0250 100 0.20 0.041 000.255 0.042 000.205 0.89 0.003 000.077 0.004 000.068 0.96  
0250 010 2.50 0.037 019.997 0.045 018.770 0.05 0.007 023.267 0.007 022.231 0.21  
0250 020 2.50 0.040 025.992 0.034 025.985 0.96 0.007 025.999 0.007 025.999 0.89  
0250 050 2.50 0.045 026.000 0.039 026.000 0.97 0.008 026.000 0.006 026.000 0.90  
0250 100 2.50 0.045 026.000 0.041 026.000 0.97 0.007 026.000 0.007 026.000 0.88  
1000 010 0.20 0.035 000.010 0.041 000.013 0.96 0.005 000.002 0.000 000.000 0.99  
1000 020 0.20 0.039 000.022 0.035 000.018 0.97 0.008 000.001 0.010 000.001 1.00  
1000 050 0.20 0.044 000.097 0.026 000.074 0.93 0.008 000.023 0.003 000.014 0.98  
1000 100 0.20 0.044 000.384 0.034 000.310 0.81 0.006 000.102 0.003 000.064 0.94  
1000 010 2.50 0.029 058.116 0.033 048.002 0.01 0.005 088.164 0.005 084.028 0.01  
1000 020 2.50 0.043 100.847 0.048 100.766 0.87 0.006 100.992 0.006 100.987 0.71  
1000 050 2.50 0.042 101.000 0.044 101.000 0.97 0.006 101.000 0.005 101.000 0.71  
1000 100 2.50 0.045 101.000 0.047 101.000 0.97 0.006 101.000 0.005 101.000 0.72  

Table 8. FWE, FDR, average number of correct rejections (N– 11) over the 0.1 m possible for Student’s t-test and Mann-
Whitney test, together with proportion of simulated data sets where they show agreement, for different m, n and δ under
normality (nominal α = 0.05).



chemotherapy, and/or radiotherapy) have improved
survival, however MB is still incurable in about a
third of cases and survivors commonly have severe
treatment-induced long-term side effects. The molec-
ular aspects of tumorigenic pathways of MB are still
poorly understood. 
A study was recently conducted to identify specific
microRNA (miRNA) signatures distinguishing tu-
mours from normal tissues, which could be used to
develop early detection and new risk-adapted thera-
peutic strategies based on molecular classification
(21).
Surgical specimens of primary MBs were collected
from n1 = 34 patients with Institutional Review
Board approval. A number of n2 = 14 samples of nor-
mal human cerebellum were purchased from Biocat
(Heidelberg, Germany), Ambion (Applied Biosys-

tems, Foster City, CA) and BD Biosciences (San
Jose, CA); thus, the total sample size was n = 48.
Quantitative analysis of 250 miRNAs was performed
on RNA samples using the specific stem-loop
primers for reverse transcription (RT) followed by
real-time PCR. The final measurements were log-
transformed.
A number of m = 250 tests were then performed si-
multaneously, in which the two groups (tumour vs
normal) were compared. We were interested in form-
ing a list of the subset of the 250 miRNAs which are
significantly differentially expressed. 
Table 11 gives the number of genes selected by the t-
test (RT), by the Mann-Whitney (RMW), the number of
genes selected using the t-test that are not significant
using Mann-Whitney (T+) and the number genes se-
lected by the Mann-Whitney that are not significant
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t-test Mann-Whitney t-test Mann-Whitney
m n δ FWE N– 11 FWE N– 11 IT=MW FDR N– 11 FDR N– 11 IT=MW

0020 010 0.20 0.017 0v0.004 0.036 000.006 0.97 0.004 000.001 0.007 000.001 1.00  
0020 020 0.20 0.021 000.011 0.036 000.015 0.97 0.005 000.003 0.011 000.006 0.99  
0020 050 0.20 0.038 000.020 0.051 000.033 0.93 0.005 000.010 0.008 000.011 0.99  
0020 100 0.20 0.034 000.046 0.042 000.097 0.91 0.008 000.024 0.014 000.037 0.97  
0020 010 2.50 0.018 001.718 0.029 001.857 0.65 0.005 001.447 0.007 001.522 0.67  
0020 020 2.50 0.029 002.702 0.047 002.938 0.74 0.007 002.639 0.010 002.921 0.73  
0020 050 2.50 0.022 002.973 0.034 003.000 0.95 0.005 002.970 0.008 003.000 0.95  
0020 100 2.50 0.029 002.997 0.048 003.000 0.95 0.007 002.997 0.011 003.000 0.95  
0250 010 0.20 0.013 000.003 0.031 000.006 0.97 0.002 000.001 0.009 000.001 0.99  
0250 020 0.20 0.013 000.007 0.047 000.015 0.95 0.003 000.001 0.004 000.001 0.99  
0250 050 0.20 0.021 000.018 0.033 000.034 0.95 0.004 000.003 0.006 000.006 0.99  
0250 100 0.20 0.020 000.043 0.037 000.116 0.87 0.001 000.009 0.003 000.033 0.97  
0250 010 2.50 0.012 007.340 0.030 008.056 0.03 0.002 008.224 0.006 009.267 0.03  
0250 020 2.50 0.023 019.563 0.048 023.361 0.01 0.003 021.532 0.007 024.815 0.03  
0250 050 2.50 0.029 025.548 0.047 026.000 0.61 0.005 025.697 0.007 026.000 0.64  
0250 100 2.50 0.031 025.915 0.033 026.000 0.88 0.005 025.937 0.007 026.000 0.76  
1000 010 0.20 0.009 000.003 0.038 000.012 0.96 0.000 000.001 0.000 000.001 1.00  
1000 020 0.20 0.012 000.006 0.044 000.019 0.95 0.001 000.000 0.003 000.004 0.99  
1000 050 0.20 0.017 000.017 0.029 000.035 0.95 0.004 000.004 0.004 000.007 0.99  
1000 100 0.20 0.026 000.065 0.026 000.161 0.85 0.002 000.007 0.006 000.031 0.97  
1000 010 2.50 0.007 016.569 0.038 019.060 0.01 0.001 027.298 0.005 032.371 0.01  
1000 020 2.50 0.012 065.525 0.047 081.682 0.01 0.003 082.181 0.005 095.648 0.01  
1000 050 2.50 0.023 098.256 0.041 100.999 0.06 0.004 099.671 0.005 101.000 0.17  
1000 100 2.50 0.024 100.653 0.035 101.000 0.68 0.004 100.807 0.005 101.000 0.48  

Table 9. FWE, FDR, average number of correct rejections (N– 11) over the 0.1 m possible for Student’s t-test and Mann-
Whitney test, together with proportion of simulated data sets where they show agreement, for different m, n and δ under
t3 distributed data (nominal α = 0.05).



using the t-test (MW+), controlling the FWE or FDR
at different α levels. 

It can be seen that while there is a mild effect of the
error measure on the number of tests rejected, there

seems to be no effect on the overlap between the
lists, which is disappointing. The t-test selects be-
tween 5 and 12 genes that are significant using the
Mann-Whitney, and Mann-Whitney between 15 and
23 that are not selected using the t-test. 
In light of our theoretical considerations and simula-
tions, we claim that the Mann-Whitney test here
gives more reliable conclusions, and the t-test may
be less reliable. In order to support these claims, we
focus on genes selected by controlling the FWE at
level α = 0.01. The list of genes selected by the t-test,
with median, first and third quartile (respectively, Q2,
Q1 and Q3), mean µ and standard deviation σ for each
group, is reported in Table 12. In the last column
(U/D) it is indicated with a minus sign if the gene is
down-regulated in tumour samples, and with a plus
sign otherwise. Note that we compute these statistics
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t-test Mann-Whitney t-test Mann-Whitney
m n δ FWE N– 11 FWE N– 11 IT=MW FDR N– 11 FDR N– 11 IT=MW

0020 010 0.20 0.016 000.003 0.045 000.018 0.94 0.0010 000.001 0.0100 00.003 0.99  
0020 020 0.20 0.023 000.021 0.040 000.052 0.94 0.0045 000.006 0.0165 00.024 0.97  
0020 050 0.20 0.025 000.057 0.041 000.210 0.82 0.0080 000.016 0.0145 00.087 0.92  
0020 100 0.20 0.030 000.163 0.038 000.615 0.60 0.0070 000.091 0.0083 00.390 0.75  
0020 010 2.50 0.014 002.744 0.047 002.716 0.77 0.0024 002.668 0.0091 02.628 0.76  
0020 020 2.50 0.030 002.990 0.049 002.999 0.96 0.0077 002.989 0.0113 02.999 0.96  
0020 050 2.50 0.038 003.000 0.055 003.000 0.95 0.0092 003.000 0.0132 03.000 0.95  
0020 100 2.50 0.044 003.000 0.049 003.000 0.95 0.0103 003.000 0.0122 03.000 0.95  
0250 010 0.20 0.005 000.003 0.027 000.017 0.96 0.0030 000.000 0.0030 00.001 0.99  
0250 020 0.20 0.004 000.009 0.046 000.049 0.92 0.0000 000.001 0.0060 00.017 0.98  
0250 050 0.20 0.021 000.068 0.033 000.362 0.71 0.0020 000.013 0.0090 00.105 0.91  
0250 100 0.20 0.025 000.279 0.029 001.605 0.25 0.0060 000.073 0.0033 00.901 0.55  
0250 010 2.50 0.005 019.212 0.044 017.060 0.01 0.0015 021.744 0.0072 19.660 0.05  
0250 020 2.50 0.015 025.745 0.045 025.901 0.76 0.0028 025.900 0.0077 25.977 0.79  
0250 050 2.50 0.017 026.000 0.041 026.000 0.97 0.0040 026.000 0.0058 26.000 0.87  
0250 100 2.50 0.035 026.000 0.042 026.000 0.95 0.0060 026.000 0.0067 26.000 0.82  
1000 010 0.20 0.003 000.003 0.042 000.015 0.94 0.000 000.001 0.000 000.000 1.00  
1000 020 0.20 0.007 000.009 0.039 000.072 0.90 0.001 000.001 0.006 000.012 0.98  
1000 050 0.20 0.024 000.066 0.037 000.438 0.65 0.003 000.010 0.005 000.102 0.92  
1000 100 0.20 0.019 000.405 0.031 002.912 0.07 0.001 000.105 0.003 001.651 0.39  
1000 010 2.50 0.012 061.228 0.043 054.553 0.01 0.001 083.004 0.006 075.089 0.01  
1000 020 2.50 0.011 098.941 0.045 099.831 0.14 0.002 100.564 0.006 100.895 0.40  
1000 050 2.50 0.015 101.000 0.036 101.000 0.96 0.004 101.000 0.005 101.000 0.62  
1000 100 2.50 0.023 101.000 0.030 101.000 0.97 0.005 101.000 0.006 101.000 0.54

Table 10. FWE, FDR, average number of correct rejections (N– 11) over the 0.1 m possible for Student’s t-test and Mann-
Whitney test, together with proportion of simulated data sets where they show agreement, for different m, n and δ under
exponentially distributed data (nominal α = 0.05).

Type I α RT RMW T+ MW+

FWE 10% 73 86 6 19
FWE 5% 67 72 10 15
FWE 1% 51 55 12 16
FDR 10% 111 125 6 20
FDR 5% 96 114 5 23
FDR 1% 73 83 9 19

Table 11. Number of genes selected using the t-test (RT)
and the Mann-Whitney (RMW), genes selected by the t-test
but not by Mann-Whitney (T+), and the reverse (MW+), for
different Type I error measures at different α levels.
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Control group Tumour group
mRNA Q2 Q1 Q3 µC σC Q2 Q1 Q3 µC σC U/D

miR127 0.68 0.56 0.96 0.79 0.44 0.03 0.02 0.11 0.09 0.13 –
miR103 0.66 0.57 0.93 0.73 0.24 0.13 0.06 0.25 0.18 0.16 –
hsalet7a 0.94 0.79 1.26 1.01 0.37 0.31 0.22 0.49 0.39 0.31 –
hsalet7b 0.43 0.31 0.64 0.51 0.26 0.13 0.06 0.21 0.14 0.09 –
hsalet7d 0.51 0.32 0.89 0.59 0.32 0.06 0.05 0.10 0.08 0.04 –
hsalet7e 0.51 0.37 0.91 0.62 0.30 0.09 0.05 0.15 0.12 0.10 –
hsalet7f 1.03 0.81 1.27 1.04 0.38 0.25 0.14 0.41 0.28 0.16 –
hsalet7g 0.97 0.74 1.17 0.92 0.32 0.20 0.13 0.31 0.23 0.12 –
haslet7i 0.92 0.73 1.05 0.90 0.27 0.11 0.07 0.18 0.12 0.07 –
miR107 0.75 0.60 1.15 0.95 0.55 0.12 0.06 0.16 0.13 0.08 –
miR124a 0.81 0.60 1.14 0.88 0.39 0.07 0.02 0.18 0.11 0.10 –
miR128a 1.11 0.99 1.40 1.26 0.42 0.05 0.01 0.11 0.11 0.17 –
miR128b 1.01 0.83 1.31 1.10 0.30 0.04 0.01 0.12 0.15 0.27 –
miR132 1.41 1.07 1.52 1.33 0.33 0.19 0.09 0.31 0.22 0.17 –
miR133b 1.48 0.91 2.09 1.57 0.84 0.09 0.02 0.15 0.23 0.47 –
miR134 0.81 0.68 0.93 0.77 0.21 0.04 0.02 0.11 0.10 0.14 –
miR138 2.01 1.11 2.81 2.07 1.13 0.06 0.03 0.19 0.21 0.37 –
miR143 1.22 1.01 1.35 1.21 0.30 0.43 0.27 0.75 0.55 0.40 –
miR149 0.83 0.75 0.99 0.82 0.19 0.11 0.05 0.27 0.25 0.32 –
miR150 0.62 0.48 0.92 0.68 0.27 0.15 0.08 0.32 0.22 0.20 –
miR154 0.99 0.60 1.33 0.95 0.46 0.05 0.03 0.13 0.10 0.14 –
miR184 1.10 0.97 1.33 1.21 0.42 0.01 0.01 0.04 0.03 0.03 –
miR190 1.15 0.94 1.56 1.25 0.45 0.18 0.07 0.50 0.35 0.47 –
miR191 1.12 0.94 1.32 1.14 0.28 0.39 0.23 0.84 0.55 0.51 –
miR212 1.01 0.72 1.06 0.99 0.36 0.23 0.14 0.36 0.30 0.23 –
miR22 1.05 0.91 1.64 1.25 0.52 0.35 0.19 0.48 0.46 0.44 –
miR28 1.44 1.11 1.58 1.34 0.35 0.54 0.20 0.68 0.51 0.36 –

miR30a3p 1.69 1.42 1.89 1.67 0.45 0.19 0.08 0.40 0.25 0.21 –
miR30b 0.96 0.50 1.12 0.93 0.46 0.33 0.16 0.45 0.33 0.21 –
miR30c 1.02 0.63 1.30 1.01 0.40 0.38 0.20 0.55 0.38 0.24 –
miR320 0.67 0.59 0.79 0.73 0.24 0.16 0.10 0.29 0.25 0.24 –
miR323 1.01 0.59 1.46 1.05 0.50 0.03 0.01 0.11 0.10 0.16 –

miR3243p 0.77 0.51 0.99 0.74 0.28 0.16 0.09 0.29 0.21 0.16 –
miR326 0.57 0.38 0.82 0.61 0.29 0.06 0.03 0.13 0.10 0.10 –
miR330 0.62 0.22 0.95 0.60 0.37 0.03 0.02 0.06 0.05 0.06 –
miR331 0.69 0.48 0.91 0.71 0.32 0.17 0.10 0.25 0.22 0.20 –
miR337 1.12 1.09 1.18 1.15 0.12 0.08 0.01 0.17 0.16 0.25 –
miR346 0.32 0.29 0.76 0.50 0.32 0.04 0.03 0.07 0.07 0.10 –

miR3693p 1.20 0.95 1.51 1.30 0.43 0.09 0.01 0.22 0.18 0.27 –
miR3695p 1.23 0.98 1.36 1.13 0.35 0.11 0.02 0.23 0.19 0.30 –
miR370 0.38 0.29 0.78 0.54 0.31 0.05 0.03 0.07 0.06 0.06 –
miR376a 1.06 0.90 1.35 1.13 0.32 0.15 0.04 0.31 0.22 0.24 –

miR3803p 1.26 0.96 1.54 1.26 0.47 0.06 0.02 0.11 0.16 0.31 –
miR382 0.53 0.39 0.96 0.64 0.31 0.04 0.02 0.10 0.08 0.11 –
miR383 0.34 0.25 0.59 0.46 0.32 0.00 0.00 0.02 0.02 0.04 –
miR425 0.54 0.46 0.87 0.66 0.27 0.23 0.15 0.35 0.29 0.23 –
miR494 1.07 0.82 1.18 1.01 0.35 0.11 0.05 0.23 0.17 0.17 –
miR95 0.67 0.61 0.88 0.73 0.19 0.07 0.02 0.13 0.10 0.10 –
miR661 1.06 0.56 1.27 0.96 0.46 0.19 0.13 0.31 0.25 0.24 –
miR18a 1.18 0.58 2.27 1.94 1.82 6.63 2.39 12.02 7.65 6.01 +
miR301 1.00 0.80 1.72 1.21 0.62 8.96 3.89 15.93 25.09 51.84 +

Table 12. Selected mRNA sequences using the t-test and controlling FWE at level α = 0.01.
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Control group Tumour group
mRNA Q2 Q1 Q3 µC σC Q2 Q1 Q3 µC σC U/D

miR26a 0.65 0.25 1.08 0.68 0.42 0.13 0.10 0.19 0.15 0.11 –  
miR26b 0.60 0.49 1.00 0.73 0.37 0.24 0.13 0.38 0.27 0.16 –  
miR127 0.68 0.56 0.96 0.79 0.44 0.03 0.02 0.11 0.09 0.13 –  
miR103 0.66 0.57 0.93 0.73 0.24 0.13 0.06 0.25 0.18 0.16 –  
hsalet7a 0.94 0.79 1.26 1.01 0.37 0.31 0.22 0.49 0.39 0.31 –  
hsalet7b 0.43 0.31 0.64 0.51 0.26 0.13 0.06 0.21 0.14 0.09 –  
hsalet7d 0.51 0.32 0.89 0.59 0.32 0.06 0.05 0.10 0.08 0.04 –  
hsalet7e 0.51 0.37 0.91 0.62 0.30 0.09 0.05 0.15 0.12 0.10 –  
hsalet7f 1.03 0.81 1.27 1.04 0.38 0.25 0.14 0.41 0.28 0.16 –  
hsalet7g 0.97 0.74 1.17 0.92 0.32 0.20 0.13 0.31 0.23 0.12 –  
haslet7i 0.92 0.73 1.05 0.90 0.27 0.11 0.07 0.18 0.12 0.07 –  
miR107 0.75 0.60 1.15 0.95 0.55 0.12 0.06 0.16 0.13 0.08 –  
miR124a 0.81 0.60 1.14 0.88 0.39 0.07 0.02 0.18 0.11 0.10 –  
miR125a 0.53 0.39 0.87 0.70 0.44 0.14 0.10 0.21 0.17 0.11 –  
miR128a 1.11 0.99 1.40 1.26 0.42 0.05 0.01 0.11 0.11 0.17 –  
miR128b 1.01 0.83 1.31 1.10 0.30 0.04 0.01 0.12 0.15 0.27 –  
miR129 0.83 0.17 1.16 0.72 0.53 0.01 0.00 0.06 0.08 0.17 –  
miR132 1.41 1.07 1.52 1.33 0.33 0.19 0.09 0.31 0.22 0.17 –  
miR133b 1.48 0.91 2.09 1.57 0.84 0.09 0.02 0.15 0.23 0.47 –  
miR134 0.81 0.68 0.93 0.77 0.21 0.04 0.02 0.11 0.10 0.14 –  
miR138 2.01 1.11 2.81 2.07 1.13 0.06 0.03 0.19 0.21 0.37 –  
miR143 1.22 1.01 1.35 1.21 0.30 0.43 0.27 0.75 0.55 0.40 –  
miR149 0.83 0.75 0.99 0.82 0.19 0.11 0.05 0.27 0.25 0.32 –  
miR150 0.62 0.48 0.92 0.68 0.27 0.15 0.08 0.32 0.22 0.20 –  
miR151 1.17 1.08 1.47 1.30 0.41 0.39 0.33 0.54 0.41 0.18 –  
miR154 0.99 0.60 1.33 0.95 0.46 0.05 0.03 0.13 0.10 0.14 –  
miR190 1.15 0.94 1.56 1.25 0.45 0.18 0.07 0.50 0.35 0.47 –  
miR192 0.89 0.39 0.99 0.84 0.55 0.19 0.08 0.27 0.25 0.27 –  
miR194 0.39 0.31 0.93 0.66 0.56 0.11 0.05 0.20 0.14 0.13 –  
miR212 1.01 0.72 1.06 0.99 0.36 0.23 0.14 0.36 0.30 0.23 –  
miR219 0.37 0.14 0.62 0.54 0.56 0.04 0.01 0.09 0.06 0.07 –  
miR22 1.05 0.91 1.64 1.25 0.52 0.35 0.19 0.48 0.46 0.44 –  

miR2995p 0.47 0.34 1.10 0.72 0.47 0.03 0.01 0.09 0.06 0.08 –  
miR29a 0.53 0.13 0.77 0.53 0.41 0.04 0.03 0.11 0.08 0.10 –  

miR30a3p 1.69 1.42 1.89 1.67 0.45 0.19 0.08 0.40 0.25 0.21 –  
miR30b 0.96 0.50 1.12 0.93 0.46 0.33 0.16 0.45 0.33 0.21 –  
miR30c 1.02 0.63 1.30 1.01 0.40 0.38 0.20 0.55 0.38 0.24 –  
miR320 0.67 0.59 0.79 0.73 0.24 0.16 0.10 0.29 0.25 0.24 –  
miR323 1.01 0.59 1.46 1.05 0.50 0.03 0.01 0.11 0.10 0.16 –  

miR3243p 0.77 0.51 0.99 0.74 0.28 0.16 0.09 0.29 0.21 0.16 –  
miR3245p 0.84 0.36 1.30 0.84 0.48 0.16 0.07 0.24 0.20 0.17 –  
miR326 0.57 0.38 0.82 0.61 0.29 0.06 0.03 0.13 0.10 0.10 –  
miR328 0.33 0.28 0.76 0.49 0.32 0.04 0.02 0.07 0.06 0.06 –  
miR330 0.62 0.22 0.95 0.60 0.37 0.03 0.02 0.06 0.05 0.06 –  
miR331 0.69 0.48 0.91 0.71 0.32 0.17 0.10 0.25 0.22 0.20 –  
miR346 0.32 0.29 0.76 0.50 0.32 0.04 0.03 0.07 0.07 0.10 –  
miR370 0.38 0.29 0.78 0.54 0.31 0.05 0.03 0.07 0.06 0.06 –  
miR381 0.64 0.20 0.96 0.58 0.37 0.05 0.03 0.13 0.14 0.22 –  
miR382 0.53 0.39 0.96 0.64 0.31 0.04 0.02 0.10 0.08 0.11 –  
miR383 0.34 0.25 0.59 0.46 0.32 0.00 0.00 0.02 0.02 0.04 –  
miR425 0.54 0.46 0.87 0.66 0.27 0.23 0.15 0.35 0.29 0.23 –  

Table 13. Selected mRNA sequences using the Mann-Whitney test and controlling FWE at level α = 0.01.



on the original and not on the log scale, which was
used instead for testing. The list of genes selected by
the Mann-Whitney test is shown in Table 13.
Due to the use of the FWE and low α, we should be
very confident about the selected genes. However,
there emerge some contradictions. 
In particular, controlling FWE at level α = 0.01, the
two tests disagree about miR-125a, in that with the t-
test no significance is declared, whereas with the
Mann-Whitney there seems to be differential expres-
sion with regard to that miR. This is particularly in-
teresting since miR-125a has been biologically vali-
dated, and we thus have some post screening evi-
dence of the fact that, for this gene, the Mann-Whit-
ney test gives a more reliable result. This result, on a
single gene, cannot be used to validate the Mann-
Whitney over the t-test in general, but it can certain-
ly be taken as mild evidence from a real data appli-
cation. 
The implications of our findings about MB are that
most miRNAs display overall down-regulated ex-
pression, suggesting a tumour suppression function.
This is another feature supporting the use of the
Mann-Whitney test in this application. The down-
regulation of MB tumour samples could, in fact, be
expected before the experiment, and while the list in
Table 13 shows only down-regulated genes, Table 12
contains two up-regulated genes (miR18a and
miR301), which could be false discoveries due to
bias in assuming normality even after log-transfor-
mation. 
Ferretti et al. conclude (21) are that an altered ex-
pression of microRNAs controlling granular cell dif-
ferentiation events might be involved in cerebellum
tumorigenesis. This property has been validated for
miR-125a whose rescued expression might inhibit
the proliferation of MB cells.

Conclusions
Our main conclusion is that while in single inference,
under normality or small departures from it, choice
between parametric and nonparametric testing may
not be particularly crucial, in that the same conclu-
sion will often be achieved, in multiple testing wild
differences can emerge. Multiple testing procedures
take into account all the p-values, with the result that

even small differences may lead to very different
conclusions. This is exacerbated under non-normali-
ty, when the t-test may be biased. The only apparent
drawback of using rank-based nonparametric tests is
that they never reject when the sample size is very
small (Table 2). 
George Box used to say: “all the models are wrong
(but some are useful)”. We draw support from his
remark to claim that tests for location based on nor-
mality (which Box would call a wrong model)
should not be undertaken lightly in the frequent
small-sample many-tests situation. Our final rec-
ommendation is always to use distribution-free tests
in such cases.
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