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Summary

Objectives. The interpoint distance distribution can be used to analyze data consisting of inter-observation distances, i.e.
all the pairwise distances arising from a random sample of #» multivariate observations. Methods for the study of such dis-
tributions exist in the literature with applications to genetics, disease clustering, and biosurveillance problems. So far, tech-
niques have been limited to nonparametric analyses. Here we illustrate how one can expand this set of tools to the use of
parametric models.

Methods and Results. We assume a parametric model f;,(d;0) for the random variable D = d(X,,X,) where d(*) is a dissim-
ilarity measure and X, X, two i.i.d. observations from a multivariate distribution. We describe the properties of a proposed
estimator for 6 (ER*), noting in particular its asymptotic normality. We compare the proposed estimator with two alterna-
tive estimators, both in general and within an analytically tractable case. We discuss the implementation of the methods to
the construction of a parametric mixture model, and illustrate the use of that model for a preliminary analysis of data aris-
ing from a biosurveillance system.

Conclusions. Parametric models for interpoint distance distributions can be a valuable tool for the analysis of multivari-
ate data ranging from geographic coordinates to highly dimensional vectors.

KEY WORDS: syndromic surveillance, U-statistic, estimating equation, interpoint distance distribution.

Introduction

Consider the positive random variable D =d( X, X,) obtained as the (Euclidean, say) distance between
two independent and identically distributed vectors Y, and Y, arising from the distribution F'X(x),
xENR” . In what follows we use the term distance for D, but the discussion applies to any symmetric (non-
negative) function of the two arguments X, and Y ,, and in particular to any dissimilarity measure that may
be relevant for the particular problem at hand. The distribution of the random variable D has been described
analytically for a few simple cases in (1) and (2), and discussed further in (3) and (4). More recently there has
been some renewed interest in the use of the distribution of D to describe multivariate i.i.d. samples
Xiseen X,y from FX . In particular, the cumulative distribution function F,(d)=EWd(X, X,)=<d) of D
can be estimated consistently from the set of dependent distances {d(X,X ),i,j=1,.,n} by
F.(d) =(n(n-1)/2)" E;ﬂ_l(d(XnX;‘)Sd)' If one considers a grid of points {dl,..., dx} along the
distance axis, then the vector \/;{F:P(dl)—FD(dl ), o F (d.)-F,(d,)} converges in distribution as »n
tends to infinity to a zero-mean multivariate normal random variable, and a non parametric chi-square-like
statistic based on F (d) can be used to test for differences between the collection of all the interpoint dis-

tances observed in a sample and a null distribution, or between groups of observations. A general result de-
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scribing the convergence of the estimator F (d) to a Gaussian process is also available, see (2) and (5). This
approach has been studied in the disease clustering setting in (6), (7), and in (8); in the genetics setting in (9);
and in the biosurveillance setting in (10) and in (11). We refer to these papers for details on that nonparamet-
ric approach.

We now consider the estimation of parametric models for F,. We assume that D ~ f(d;0), where 6 be-
longs to some parameter set @ C N7, for some p. Letting /(0;d) be the log-likelihood of D based on one
observed value d of the interpoint distance, we focus on the estimation of the parameter 8 from what one can

call the U-score vector

ZSH(DU,;'])=0 ’ [1]

=
or the unbiased estimating equation constructed from the marginal log-likelihood contributions, with S, (d)
the score vector from the assumed distribution of D, and D(,-,_,-] = d(X;:X;)' The unbiasedness of [1] is im-
mediate since the dependence among the distances has no effect on the expected values.
Thus the resulting estimator of @ is formally identical to the maximum likelihood estimator that one would
compute if the distances were independent. Using results from the theory of U-statistics, in the next section
we discuss the asymptotic properties of this estimator of @, and we compare it to two alternative estimators
obtained from i.i.d. reductions of the problem. We then discuss the analytically tractable case of the distance
between independent and identically distributed observations arising from the bivariate normal distribution
Nz(O,agfz). In the following section we then apply the methods to the construction of a mixture model

within the context of biosurveillance data. We close with some discussion in the last section.

Methods

Estimation

The use of parametric models for the study of interpoint distance distributions requires that one be able to es-
timate the paramieter & of £, (d;0). Let us consider three possible estimators.

The first possibility is the estimator é| = 0(a ), where @ is the maximum likelihood estimator of the vec-
tor parameter o of the underlying distribution FX (x;c) of the original coordinates X, Very importantly, this

requires the specification of the multivariate distribution of F, , which might not be desirable (or feasible) if

the dimensionality of X is indeed large. If, however, we allowX;'or a moment for this possibility, then by also
assuming that X is absolutely continuous with respect to Lebesgue measure we have an associated density
function fX(x;a) on R”. As long as the function 6(-) relating o to € is known (and smooth enough),
traditional likelihood theory applies since the individual observations Y,..., X, are independent and identi-
cally distributed.

The second estimator is the maximum likelihood estimator é: obtained by maximizing the likelihood func-
tion L(0:D,,...,D,,,) of D computed from » /2 independent distances obtained by pairing the observations,
for example as in (1,2),(3,4), ..., (n—1,n). This is equivalent to extracting from the n(n—1)/2 dependent
distances {d(X, X ;),i,j =1,...,n} one particular set of n/2 independent distances (for simplicity we can
assume # to be even). By independent distances here we mean that each element Y,, i =1,...,n can only
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appear in exactly one of the distances, so that if one considers the distance matrix }f, of the distances
d(X; X ;) then the selection is equivalent to choosing an element (i, j) from A, and then excluding the
ith and jth rows and columns from subsequent consideration. Such a set of distances can then be written as
d(Xpp X p ) d(X ps X p)s-nd(X 5 X )} for a particular permutation p = {p,, p,,...,p,} of the integers
{1,2,...,n}, so that these distances can be indexed as d_,w=1,...,n/2. The estimator g, is thus defined as
the solution of E: Seld(X .5 X p.,)1 =0, and it can be identified as g,=g,(p). A combination of the
possible estimators g,(p) over the n! permutations p or over then!/ {(n/2)! 2"} possible ways of cons
structing pairings could also be entertained.

The third estimator, g, is the one that is obtained by solving the U-score estimating equation [1] above.

We now briefly review the well-known asymptotic results that apply to él and f;z’ and discuss asymptotic
results that apply to g,. In what follows, the distributions that expectations refer to will be clear from the
context, and thus they will be suppressed from the notation.

The asymptotic distributions of 7'"* (§,-0) and n'*(§,-6) (conditionally on the choice of the permutation
p ) are straightforward from likelihood theory. For @, we first recall that for-the maximum likelihood esti-
mator ¢ of the parameter a of FX(x;a), n”z(d —qa) converges in distribution under regularity condi-

tions to a normal random variable with mean zero and variance-covariance matrix

{en, O [Efs.c0sieof{erl o) =1, [2]

where S (X)=dlog fX (xa)/oa’, H, (X)=4aS_(X)/0a, and with the expression simplifying to the
inverse information [‘;] = [E ) (X)S:(X)}]-] (see for example (12)).

Therefore, the asymptotic distribution of #* {§(¢)~6(ct)} can be obtained immediately via the delta

method as being N {O,%H(a)]u = 6((1)"}‘

The asymptotic distribution of the centred and scaled estimator fiz follows the same lines, if one replaces the

score S, (x) for a by the score S, (d) for 6. Also, n here needs to be replaced by n/2 , because that is the
12

number of independent pairs obtained from » individuals. In other words, (n/2)""(g,—0) also converges in

distribution to a zero-mean normal random variable, with variance-covariance matrix

{Er, (D)} [E{s. (D) ]| {1 (o)) = [E{s@:0)5"0:D))] =15, 3]

We now turn  to ~our proposed estimator g,. Solving [I] above is equivalent to solving
[n(n-1)/2)" Ef«; SpiD;; ;1 = 0. (Note how for =2 the estimators 0, and g, are algebraically identi-
cal.) We use the notation Pg and P g to indicate the expectation of the function g(}’) with respect to the
distribution P =P, of the random variable Y and with respect to the empirical distribution
P = (lfn)z;:_l 5}_{ respectively, with 6}.{ the Dirac delta function at Y = y,. Under regularity conditions,
the estimator @, maximizes the quantity U (6)= P,,Efu (d(X1 X)) ={n(n=1)/2}" Ea‘w‘ lAd(X s X))}
where [, {d( X, X,)} =log f{d(x; x,);0} is the log-likelihood for the parameter € from the distribution of
the random variable D. Define the functional U(6)= P*l,{d(X, X»)} = El,{d(X, X )} . Consistency of
0, then follows if one assumes that: (i) U(6) is uniquely maximized at the true parameter value 6 =6, (ii}
U(0) is continuous, and (iii) U, (0) converges uniformly in probability to U (6,) (see for example (13)).
Further, r.!”z(fj3 —0,) converges in distribution to a normal random variable with mean zero and variance

HEH, (D)} [E(S,,(D,2)S1, (Dys )} {EHS (D)} [4]
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When comparing [4] and [3] it should be noted that the convergence in [3] is based on the scaling constant
(n,f}l)“!. while the convergence in [4] uses n'"? . Also, the central terms in the two variance-covariance ma-
trices are different.
This asymptotic result can be shown to hold in great generality by making use of some results from the
theory of U-statistics and U-processes. In particular, the proof of the asymptotic normality is similar to that
for the empirical semplicial median (see(14)). A general result about the asymptotic distribution of M-
estimators based on a criterion function of several variables (as we have here) is stated as Theorem 5.5.7 it
the same reference, where detailed regularity conditions are also described. In the appendix we detail the
specialization of that result to the problem being considered here.
We can easily construct a consistent estimator for the variance-covariance matrix given in [4] above. From
U-statistics theory, if A( Y, X-) is a symmetric kernel such that Ekz(X,,Xj.) < oo, then

-1

& (;] E Gl gl _d’N[0’4E{h(Xan)f?(X],X3)TH

i<
as n tends to infinity (see for example (15) or (12)).
Letting A( X, X ,) = H, (D). it follows that as long as E{H,(D)}* <%.as n tends to infinity one has that
EH,,"(D) =(n(n-1)/2)" EM H, (D, ;)— EH, (D) in probability. Note that this result actually holds
(as long as E| H,(D) |< oo ) with the convergence being almost surely and in L (see (14)). After symmetri-
sation of the kernel S, (D, ,)S,

o D)) from this result we obtain

~ 1 5 5
ESen(Du,zl )SHT[.(DU,.\:) SO W E h(‘sf’k)_L*E[Sﬂ..(Dn,:})SrI,(Dn.si)]

6 " i< f<h
3

as n tends to infinity, where we have defined

h(i, j. k) = };K Sa. (D 5)58 (D )
(Ppaap; KRR )

with R(i, j,k) being the set of the 3!=6 permutations of (i, j, k).
Both estimators are square matrices with the same dimension as 6, and they can be computed with g re-
placing 6, as long as S,(D) and H (D) can be expanded around @, with a first-order Taylor expansion.

Thus an approximate large-sample variance estimator for g, is
40 S i . "
2{EH; (D)Y'E(S; (D)5} (Do W(EH; (D)} 5

[Indeed. a similar estimator can be constructed for the asymptotic variance-covariance matrix of the non-
parametric estimator of the interpoint distance distribution described in (5). Details of that construction are
provided in the appendix].

Note that there is an interesting connection between the estimating equations for 9"3 and fj3 that further mo-
tivates the construction of g, (in addition to the unbiasedness of [1] above). We show in the appendix that

ni2

D D S (X oy 0 X o) )} = (=2 S){d(X 1 X )}, (6]

[V E i<)
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n2

so that solving [1] above is equivalent to solving (n!)“zp - Sy {d(Xm,-...*Xp.:,-.)} =(, or the mean of
the estimating equations that produce f;z over all possible permutations p of the integers {l,...,n}. This is

similar to the relationship that expresses the sample variance from a univariate sample Y

'ERE

., Y, as the aver-
age of the estimators built on the distances (¥, - Y;_)2 from a specific permutation of {1,...,n}, with the aver-
age taken over all possible permutations.

In the next section, we discuss a specific situation in which we assume knowledge of the underlying distribu-

tion FX of the coordinates from which Euclidean distances D =d( Y, X ,) are computed. The specifica-
tion of F'y, allows in this case for the analytic derivation of all quantities described above, and thus their

X

analytical examination.

Illustration: the bivariate normal distribution with Euclidean distance

ii.d.
Consider X ,.., X, X;=1{X,,, X2} ~ N(0,0°],). The optimal estimation of o requires maximi-
ordinates are independent and have the same distribution, we can simplify the notation and re-define the co-
ordinates to be called X,,..,X, . Differentiation of the log-likelihood produces the score

S (X X3") =-n/o’+ Ef_ﬂl X} /(20"). This derivative can be set equal to zero to yield
si=Cn)" Yy
plicit knowledge of their probabilistic model F.. The (¢xact) variance of this estimator is obtained immedi-
ately as var(5})=(2n)" Ei’: var(X]) =(2n)'var(X)=0'/n since X7~0’x]. and therefore
var(X})=20".

Note that this same result can be obtained by computing the asymptotic variance of the estimator from the

Xf. Note how this estimator requires the use of the original coordinates X, and the ex-

model’s information as in [2] above. First, note that JE,'XIZ,J(«_,1 =(EXl] ) =o*. Also, integration by parts
yields EXI" =30". Easy algebra then shows that the expected value of the squared score (the information)
I, = ESj“ is equal to n/0". The inverse of Iﬂz is therefore also equal to o* /n, as one should expect,
and the variance of G2 can be approximated by o* /n.

Now, consider g, = g3 and 0, =3 - Given the definition of Euclidean distance, under the assumed model
for the coordinates X. the distribution of the squared interpoint distance between two randomly selected
points X
D’ ={X,, = Xo,} +1X, =X, ) is the sum of two independent random variables each with distribu-

and X, follows the exponential distribution with parameter A=(4o?)", as

tion 20, and is therefore distributed as a 20°° % random variable. We work directly on estimating the
parameter 6 = o, as the function (cr) here is the identity function. Since D’ ~exp{l/(40’)} , the den-
sity function of D is equal to fD(d;Uz) =(20%)" a’exp(a’2 f’(403)).

For the distance D the derivative of the log-likelihood is equal to S . (D) =—(0°)™ + D’ / (40*). which af-
ter summing over the n/2 distances d,,...,d,, and setting equal to zero, yields the estimator
6i= (Zn)" E:j df,. The (exact) variance 03’ this estimator is immediately found to be equal to
var(¢3) = (4n°)" (n/ 2)var(D}) = 8n) ™' (407 | = 20" /n.

The direct verification of the expression of the asymptotic variance for &3 in [3] requires the term
EH .(D)= E((u*)" -D’ ,’(2(;"))= (0*)"'=40% /(20°) = =(c*)". It is easy to verify that this is also
equal to ESj: , so that the approximate variance of (53 is indeed equal to (2/ n) [, (D)'=(2/n)o".
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The estimator (53 = &3 treats all n(n—-1)/2 dependent distances as if they were independent. It follows that
Gi=2n(n-n}" » d(X,-,X.,-)E' Note that by the argument in the previous paragraph, if one assumed
that the n(n—1)/2 distances were really independent, then one would (mistakenly) compute the variance of
G3 as being equal to 20* / {n(n-1)}. This would grossly underestimate the true variance, which we now
show to be equal to o* / . The asymptotic variance formula in [4] requires the same term EH“2 (D) above,
as well as the additional term ES .(Dy1))S (D) - Since in this example the underlying distribution FX
is known, we can also compute the true theoretical value for this latter quantity: in particular, one can check
that E{SUQ(D“‘EJ)S& (Dll_3})}= (40*)" (please see the appendix), so that from [5], the approtimate large
sample variance of &7 is equal to (4/n)(-o*)(40')"' o' =40 /(4n) =" /n.

Lastly, note that for n =2 the two estimators 3 and (33 are algebraically identical (and they must therefore

have the same variance) but that as n — %, var(57)~var(53)~ (0.5)var(53) .

A mixture model for biosurveillance

One of the aims of biosurveillance is the identification of geographic patterns that represent aberrations from
an assumed null behaviour of recorded health events (16). Information recorded at most health care encount-
ers includes patient home address, a demographic variable that, when geocoded, may have value for surveil-
lance. Outbreak detection using geographic coordinates requires that a baseline distribution of patients be es-
tablished and that population density be accounted for. It has previously been observed that the distribution
of the pairwise interpoint distance among patients tracked in the surveillance system being studied shows re-
markable stability over time (see (17), (18)). The approach that we have discussed above can be used to en-
tertain parametric models to describe these interpoint distance distributions. The data that we consider con-
sists of all visits for patients with respiratory iliness presenting to the emergency department of an urban aca-
demic tertiary care paediatric hospital from December 21st, 1998 through January 12th, 2002. Patients living
more than 50 miles from the hospital were excluded. The chief complaint and International Classification of
Diseases (ICD) codes of eligible patients were used to select those with respiratory illness (see (19)). Pa-
tients’ home addresses were translated to geographic coordinates using geocoding software (ArcGIS 8.2, En-
vironmental Systems Research Institute, Redlands, CA). Addresses were cleaned prior to geocoding using
software (ZP4, Semaphore Corp, Aptos, CA) that matched addresses to the August 2002 US Postal Service
ZIP+4 database and made corrections.

We now show how the techniques described above specialize to a parametric model suggested by this data
(for a complete discussion of the biosurveillance data system we refer to (16) and (19)). Observation of the
histogram of the interpoint distances computed among the patients’ addresses suggested that a reasonable
model for the interpoint distance could be a mixture of a lognormal and a normal distribution. Clearly, the
support of such a distribution also includes (impossible) negative distance values, but the location of the
normal component of the mixture appears to be such that this model can be expected to provide a good fit.
Equivalently, we assume that D has the density function f, (d;0)=a f,(d; ﬁ],df)+ (I-a) f,(d; Ju:,cr;) .
with f;(d) the lognormal density with parameter (u,,07) and f,(d) the normal density with parameter
(u,,07) . with the mixing parameter o €(0,1).

For a general two-component mixture f, {d;0 = (6,,0,,a)"} = a f(d;0,)+(1-a)f,(d;0,) of two densi-
ties f,(d;0,) and f,(d;0,) with separate parameters 6, and 6,, we let§, = §,(6,) = dlog f,(d;6,)/ 96,
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and §,=5,(0,)=dlog f,(d;0,)/ 90, be the two score vectors. Differentiation of the log-likelihood
log f,,(d;0) with respect to 6" yields the score vector § ,(d)=[SH(6,),SH(6,),S ()], where for ease
of notation we drop the parameters and the argument d:

af,
So(f’)—de log 1,,(d;0) = 7 S
d-a)f,
Sp(0)) =— 09_ 7log f,(d;0) = ——— A S2
- gy St
So(ﬂf)—aa log 1,,(d;0) A

Let H,=H6,,0)=0"log f,(d)/(00,00]) and H,= H(0,,0,)=3"log f,(d)/(96,00, ) be the two
Hessian matrices for f,(d) and f,(d). After taking partial mixed derivatives of the log-likelihood, the
Hessian matrix H”(B,F)r) =0 log £,,(d)/(8600") for f,(d) is equal to

- fify o s /i al=a)fify . s 4,

{ ety ”‘} fD 00, Uik 72

_a(l-a)4if, ati, f A
p(0,0") = 1 I= = 2 2 7 92
H(6,07) L=hlessi 4 a){ Ulos.sie s } Ll
hs Nfer (h-1)

S Vi 7

In the specific mixture model suggested by our data we have 6, = (y],crf) and 6, = (ul,(r,_f) as the param-
eters in  the two densities i (d:0,) = (do,)" (21) " exp(logd - u, ) ;(zgf)} and
£u(d36,) = @320 exp L@/ @02)

The score vector and Hessian matrix for f, are

1 1
3 ) -— -—(logd - )
Oj of o
S] - 1 3H| = 1 1
- logd - -—(logd - —————(logd - u,)’
20]2 2 4 ( 24 lu’l) 014 ( g .|u|) 20]4 CTF ( g Ju[)
For f, one has
d_.u? _ 1 _d_.u'g
¢ o; o; o,
2 = ) ;-Hg = o]
- 1 (d‘luz) d-u, 1 (d_iuz)
-t - -
20, 20, o, 20} of

The U-score estimator ég is obtained by solving [1], or equivalently by maximizing the likelihood, which
can be done using standard software. In particular, we used the SAS/OR procedure NLP, after reparametriza-
tion of the mixing parameter ¢ through the logistic function.

We fit the lognormal-normal mixture model to the biosurveillance data consisting of all interpoint distances

among the home addresses of 708 patients with respiratory illness who visited the paediatric emergency room
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during the last two consecutive weeks in the period December 30th, 2001 trough January 12th, 2002. We ob
tained the estimate [fi,, &1, (1,53, ¢]=[1.721,0.878,19.563,78.363,0.837], with associated standard er
rors [0.062,0.055,2.261,9.625,0.042], obtained with the estimator described in [5] above. Note that any de
fault standard errors that are produced by the maximization software should be discarded, as they are basec
on the wrong assumption that the distances constitute a random sample of independent and identically distri-
buted distances that follow the assumed model.

As an exploratory tool, we have compared the average of the variance estimates [5] computed on 20 inde
pendent samples obtained from the three-year data with the empirical variance of the U-score estimates com:
puted on 1000 independent samples of 700 locations, sampled from the same three years of respiratory data
The ratio of the standard errors of the estimators to the empirical standard errors ranged between 0.92 anc
1.33, thus showing reasonable agreement. Since the theoretical variance estimator is based on the assumec
mixture parametric model while the empirical standard errors are based on resampling from the actual distri
bution of addresses, this comparison also indirectly increases the confidence in the parametric model that we
have assumed.

Further analyses will study the relative merits of this new parametric approach when compared to the non:
parametric one, but one would expect a gain in efficiency from using the former if the model describes the

data reasonably accurately.

Conclusions

We have shown in detail how parametric models can be constructed for the analysis of distance data. We
have motivated the study of the estimating equation estimator with the study of the bivariate normal case, anc
have provided both general formulas for inference and specialized formulas for mixture distributions.
Consideration of the interpoint distance distribution for the analysis of multivariate data may prompt the
question of identifiability of the underlying distribution of the coordinates from the interpoint distance distri-
bution, especially for lower-dimensional problems. The question of the description of the class of distribu-
tions FX (x), x& $* that produce a particular distribution F, of the interpoint distance D is a difficult one
as one cannot exclude the possibility that several distributions FX may produce the same distribution for D
For example, when working with Euclidean distances, any translation or rotation of the axes produces the
same F (d), so that one only needs consider equivalence classes up to these transformations. This (anc
other) invariance properties, however, do not prevent one from modelling the interpoint distance distributior
directly without having to worry about the interpretation of features of that distribution in terms of the under
lying distribution FX . For example, the mixture structure that we have illustrated in the previous section i
useful to describe the observed interpoint distance distribution, regardless of the fact that it would not be easy
(if at all possible) to produce an inverse mapping to the original coordinates.

Note that while we have not explicitly elaborated on this, it should be clear that performing hypothesis test
ing and constructing confidence intervals are both straightforward from knowledge of the asymptotic distri
bution of the estimators of the model parameters. In applications, one may for example be interested in test
ing the hypothesis of equality of the interpoint distance distributions between two groups of observations

and chi-square-distributed quadratic forms can easily be constructed for that purpose from the estimated pa-
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rameter estimates and their estimated variance-covariance matrices. For example, in the bivariate data tha
we have discussed earlier, this would allow the testing of the hypothesis of no deviation of a recently ob
served sample from a known historical norm against the general alternative hypothesis of a distributiona
change in the distribution of the cases. (Note that this is not limited to alternative hypotheses of clustering).
The methods that we have discussed can be used in a variety of settings, ranging from low-dimensional dat:
(e.g. geographic coordinates, as in the illustration discussed above) to very highly dimensional data. As :
matter of fact, it should be stressed again that while here we have focused on the Euclidean distance on the
plane, the same discussion also applies to any symmetric dissimilarity measure between obseryations. Con-
sideration of these distances instead of the individual coordinates allows one to entertain the analysis of dat:
in large and complicated spaces without the need for the specification of the multivariate distribution of the
coordinates, and with a great reduction in the dimensionality of the problem.

There are many settings where dissimilarities between high dimensional quantities are of interest (e.g. clus
tering, functional data analysis, nonparametric tests, etc.), but we mention two in particular. We cited above
the use of interpoint distance distributions when distances are genetic distances (see (9)). Another area of po
tential application is the analysis of life courses in demography and of sequences in general (see (20) anc
(21)). Distances between sequences can be constructed, for example, from optimal matching techniques as ir

(22).

Appendix

On the asymptotic normality of 8'3

To apply Theorem 5.5.7 in (14) we need the following development for U(6) near ¢, (taken without loss of generalit)
to be zero) to hold: U(0)=U(0)=(1/2)040" +0(0[). If we assume that the log-likelihood can be expandec

around G, =0 via  Taylor  expansion then the requirement is  satisfied immediately, a:

ly(d)=1y(d)+1'y(d)0" 4(112)0f1"(d)}0" +o(|6 ) implies

?)

U(B)=U(0)+E{l 'O(D),faf +%GE{J”U(D)}HT +o(|6

’)

= E{1(D)} =30 ~E{1"o(D)}]6" +o(|0

by the properties of score functions, since }'o(d) = dl,(d)/ 48" = S, (d). The theorem in (14) also requires the identi
fication of a function A(X): N> — M (where d is the dimension of ) such that EA(X) =0 and E [A(X) <
and such that the function g/ (x)= (6x1 - P)x Pl, is stochastically differentiable at zero. Here
ml,(x)= 6lefe {d(x, X)} - Pz.-'e {d(X, X5)} = El{d(x,X)} - El,{d(Xb,, X )} One can identify the functior
A = [, S,{d (X, %)}y (x2)dl x50 that

EA(X) =J:ngj;lg SH {d(xux:)}.ﬂ;(x;).ﬂ;(xl)dx1dx: = ES{; {d(Xqu)} =0.

From Theorem 5.5.7 we then conclude that n58"3—d>Z as N tends to infinity, where Z is N(0,A) anc

A= 4A"{COVA(X)}A'] , and we have seen above that 4 = [_E,'”O(D)] . Finally we have
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coviA(X)}=E XA(X)A(X)T
[y [foe SotdCrnxdlfy e[ . S, e e f,;(xz)dmr £, (ed,
= [ [foo S0 by e [ [ Sy e}y )]y (el

“Jw

=J;l3 [_’;i:_ﬁ,i: Sytd(xix2)} f3 (x2)Sy {d(xhxs)},ﬂ;(xs)dxzdxs] Jo(x)d x,
=J?JFJ?J13J‘:H’ [Sa{d(xhxg)}sj {d(x), X3)}]f;;(m)ﬁ;(xz)fs(x?)dxdxﬂx-‘
= E[Sy{d(X 1, X2)}S; {d(X 1 X3)}],

which matches the expression in [4].

A variance estimator in the nonparametric setting

Let F, (d)=El(d(X X,)=d) be the cumulative distribution function of the interpoint distance between two ran
domly selected points Y, and Y, generated from some distribution’ ', A consistent estimator for the interpoint dis
tance cumulative distribution function F, (d) atd is E(d)=(nn-1)/ 2)" Ek}_ (d( X X;-) = d)- As discussed ir
(2) and in (5), if one considers a grid of points {d,,..,d } along the distance axis, then the vecto
\/;{F;(d])— F,(d,), ...F(d,)-F,(d,)} converges in distribution as 77 tends to infinity to a zero-mean multi
variate normal random variable, with variance-covariance matrix Z={0,,}: with
o,,=cov[l{d(x, X2) <d,,d(X,X3)<d} ] ab=1..K.

Since o, = E[l{d(Xan) =d,.d(X, X3 = dﬁ}]_ EWd(X, X)) =d,}EWd(X, Xy)=sd,}, the same U

statistics results used to construct the consistent estimator for the variance-covariance matrix of g , can be applied to thi:

nonparametric case. The covariance matrix Z can be estimated consistently by the terms

1
[’:} |sa‘<,2<ksu

|5 S wdx ) sd || S e x)sd | |

Al si<jsn T Isi<jsn
2 2

where h(XnXpX&;d”adﬁ) =6" EP [l{d(Xfﬁ’XP:) < d{,,d(Xp,, X.F’_:) < db}} is the symmetrised kernel computec

over the collection p = {(p,, p,, p;)} of the six permutations of the indices (i, j, k). In the calculation of this estima

(}u_h =4 h(XnX_an‘:;d,,sdf,)

tor, for efficiency the triple sum should be implemented as a single loop by making use of (fast) matrix multiplication:

for the inner sums.

Proof of equality [6]

We now prove the equality

3 S 5,1 00 X ) = 1= 20 S, X X))

(e i<
given earlier. Note that for each permutation p ={p,,...,p,} of the integers {l,...,n} . the left hand side contains the
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n(n—Z)! permutations, because it can appear in any of the n/2 positions (1,2),(3, 4),,__, (n— l,n) , and for each of
these, there are (17— 2) ways of rearranging the other elements in the permutation. As S.-:{Du,zn} = S”{D{z_”} , there are
atotal of (2n/2)(n-2)!=n(n-2)! permutations that produce the term S, {D ,} = S,{D,,, } - This proves the re-
sult. Note also that since there are n(n —2)! permutations that produce the term S, {D“J_}} for any pair (i, j) . and be-

cause there are n(n—1)/2 such pairs, from the right hand side of [2] we anticipate a total of

(n(n=1)/2)"n(n-2)=(n'n)/2 terms in the double sum on the left hand side. That this is the case is clear from the
observation that each of the n! permutations produces »2/2 terms, so that the total number of terms in the left hand side

is indeed (n!n) /2.

Calculation of £ {S (D)8 2(Dm})} for the bivariate normal

First, note that

ED{EI.E]D{EIJ} = E{(XII _le)z +(X, _Xzz)eH(Xn _Xﬂ): +(X), ‘X_‘»z)e]
=E{Xu _le)z(Xn _X3|)2 +(Xll _le)g(Xlz _st)z +
+(X13—X33)2(X“—X3l)2+(X]2—X22)2(X]2—X33)2},
with E(X, _le)g(Xu _X_n): =E(X), _Xzz)z(Xn _X_:l): = 40" and
E{(Xll - X)X, 'X_n)z}: E{(_Xﬁ X, _2X11X2|](X|21 +X;, _2X11X31]}
=E?{ldl +X1:}1X32| _2X|3|X3| +X|21X:f| +X:}21X??| _2X||X22|X31 _2X|31X2| -

“2X, X, X3 +4X XX, | =30  + o' + 0t 10" = 60"

Thus ED;, D, = 60" +40" +46" + 60" = 200" . Finally we have
1 D, 1 D
E{S 2(D:121)S !(Dm;)}=E -+ {L;} -t EL?
¢ | " o 4o o 4o
11 2 1 2 1 2 2 1 40’ 40° 1 .
= EDuy — T ED 5 + v ED Dy =75 8 200"
o’ 4o 4o = 160 T ot 407 407 160
N
40"
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