
Introduction

Adaptive designs have received much attention in
the recent literature, both from a methodological and
a practical point of view [e.g. the white paper from
the PhRMA working group (1), special issues of the
Journal of Biopharmaceutical Statistics in 2005 and
of the Biometrical Journal in 2006, a JAMA editori-
al in 2006 (2), ...]. While the methodological litera-
ture on adaptive designs was already well developed
in statistical journals after the publication of seminal
papers in the ’90s (3-7), more recently, much debate
and discussion has followed the publication of FDA
reports urging progress in developing and using new
tools to improve the efficacy of drug development
(8-11). Interestingly, these discussions have involved
statisticians and trialists from the pharmaceutical in-
dustry, the academic world, and regulatory agencies.
As opposed to traditional fixed design trials, adap-
tive trials are clinical trials where accumulated data
are used to modify some aspects of the ongoing trial,
while still preserving its validity and integrity. This
definition encompasses a broad range of possibili-
ties. For instance, group sequential designs may, in a

way, be considered adaptive designs, as stopping
rules allow early termination of the trial on the basis
of the evidence accumulated in the course of it. Sim-
ilarly, trials where the treatment allocation of new
patients depends on the outcomes of previous pa-
tients, as in the case of the play-the-winner adaptive
allocation scheme, are also adaptive trials (12).
Adaptive trials may also comprise Bayesian single-
arm or multi-arm designs (13). One important point
in order to understand adaptive designs is that adap-
tation is a design feature aiming at enhancing the tri-
al, and not simply ad hoc changes used as a way of
rescuing a poorly planned trial (1).
Since the field covered by adaptive designs is quite
wide, this paper will focus more specifically on so-
called flexible designs, i.e. group sequential trials in
which design modifications are allowed at interim
analysis, using data from inside and outside the trial
(14-16). The paper is organised as follows. The sec-
ond section describes the principles of flexible de-
signs and some types of adaptation already used in
the literature, and presents seamless phase II/III trials
within the framework of flexible trials. The third sec-
tion gives an outline of statistical methods used to
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control the type I error rate of a flexible trial, and
briefly underlines current methodological issues.
The last section contains discussion on flexible trials
and future research.

Principles of flexible designs

Flexible designs are mainly an extension of group se-
quential designs, where the sequel of the trial may be
re-designed after a planned or unplanned interim
analysis. One principal justification for flexible de-
signs is their ability to cope with some of the draw-
backs of group sequential trials, which rely on the
specification a priori of key parameters, such as the
expected treatment effect one wishes to detect, the
variance of the main endpoint, the treatment arms to
be compared, and the statistical methods used to car-
ry out these comparisons. The predetermination of all
these characteristics may not always be an easy task,
and misspecification of them can occur in ineff i c i e n t
trials. In contrast, a flexible design may make it pos-
sible to reassess the sample size of the remainder of
the trial on the basis of the data of the trial itself,
blinded or unblinded, or of information external to the
trial. One may also choose a test statistic more appro-
priate to the trial data or modify a multiple testing pro-
cedure. In any case, the overall type I error rate of the
trial has to be preserved. Control of the type I error is
possible through adherence to an invariance principle.
Consider that, without any design modification, the fi-

nal test decision is based upon a combination of test
statistics obtained at different stages of the trial, con-
trolling for the type I error rate α. Any design modifi-
cation which preserves the distributional properties of
these stage-wise test statistics preserves α in the
whole (14, 17). It thus becomes possible to replace the
remainder of a trial with a design which preserves the
initial type I error, conditional on what has been ob-
served up to the intermediate analysis.

Flexible two-stage design

For the sake of simplicity, the statistical principle of
flexible designs is presented for a two-stage design,
though it can easily be extended to more than two
stages. The sequential nature of flexible designs
leads to the need to integrate information from the
different stages into a single stage-wise test statistic.
Several methods have been presented, which are eas-
ily explained in terms of combination tests (18, 19).
Let us assume the trial is designed to test a null hy-
pothesis H0 1. The scheme of the two-stage design is
presented Figure 1. To test the null hypothesis, a first
stage is planned as in a conventional group sequen-
tial design. Type I (α) and II (β) error rates are fixed,
and a test statistic Z is defined appropriately – we
will here use the one-sided test p-value. Stopping
limits for stage 1, namely α0 (> α) and α1 (< α), are
determined, and a sample size n1 is computed [see
e.g. (20)]. At this stage, the way to combine the
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Figure 1. Schematic representation of a two-stage flexible design. The first stage allows testing of the null hypothesis H01;
at the second stage, a design adaptation is performed, possibly leading to selecting a second null hypothesis H02. If no adap-
tation of the null hypothesis is decided, then H02 is simply H01. Stage-wise p-values are combined as C(p1, p2), and the fi-
nal decision concerns H01 ∩ H02.

Stage 1 Stage 2

Accept H01 Accept H01 ∩ H02

> α0 > cα2

∈ (α1; α0) AdaptationH01 n1 ⇒ p1 n2 ⇒ p2 → C (p1, p2)(H02)

≤ α1 ≤ cα2

Reject H01 Reject H01 ∩ H02



stage-wise test statistics has to be laid down. This
combination rule has to be fixed before the interim
analysis is carried out, but the stopping limits may be
adapted at the time of the interim analysis (20, 21).
Once the n1 subjects have been accrued, the test is
performed, and a p-value p1 is obtained. According to
the value of p1, the trial may stop according to the pre-
defined stopping rules. If p1 ≤ α1, the trial stops with
rejection of the null hypothesis (stopping for eff i c a-
cy), and if p1 ≥ α0, the trial stops without rejection of
H0 1, which is also referred to as stopping for futility.
If no early stopping rule is met, the trial proceeds to a
second stage. Contrary to classic group sequential tri-
als, it is, however, possible to use all available infor-
mation to redesign the second stage (design adapta-
tion). Design modifications can be based on data col-
lected in the trial so far, but also on information exter-
nal to the trial, and do not need to be laid down in ad-
vance (15), although it has been recommended to pre-
specify the scope of possible adaptations in order to
facilitate interpretation and acceptance of the trial re-
sults (1). One common adaptation is to reassess the
sample size n2 to be recruited in stage 2.
The second stage of the trial is then conducted up to
the accrual of n2 patients, resulting in p2, independent
from p1 under the global null hypothesis. Both p-val-
ues are combined according to the pre-specified rule
C(p1,p2), leading to rejection of the intersection null
hypothesis H01 ∩ H02, or not, according to whether
or not C(p1,p2) ≤ cα2. The critical value cα2 depends
on the combination function, and on the early rejec-
tion limits α0 and α1. It is chosen to control the over-
all type I error rate α. Note that special cases are ob-
tained setting α0 = 1 to avoid early stopping for futil-
ity, or α1 = 0 to avoid early rejection.
At interim analysis, one may also set two decision
limits for the second stage, as for the first stage, and
let the trial proceed to a third stage if C(p1,p2) falls
between the boundaries, and so on ... (19). 

Adaptations

In the literature, most design adaptations considered
so far have dealt with sample size reassessment (4, 5,
7, 20). First, sample size reassessment based on
blinded or unblinded nuisance parameter estimates
(e.g. variance) has been widely discussed, and is no

longer a matter of debate, except with regard to un-
blinding (22-24). These design modifications princi-
pally aim to preserve the power of the trial in the
event of misspecification of these nuisance parame-
ters at the time of trial planning.
More debated is the use of the observed treatment ef-
fect in the sample size reassessment (25). The condi-
tional power, i.e. the power conditional to the ob-
served outcome at the interim analysis, seems a rea-
sonable choice to recompute the sample size for the
second stage. Actually, the overall power averages
out over all possible outcomes at the interim analy-
sis. Once this analysis is performed, there is no ad-
vantage in taking an expectation over what is known
not to have occurred. Actually, conditional power
was regarded as a tool for trial monitoring long be-
fore the spread of the literature on adaptive designs
(26). The main question is under which alternative
the conditional should be computed. Some authors
have used the estimated treatment effect at the inter-
im analysis, also called the predictive power (20, 27).
If using this observed treatment effect provides a
good control of power it may also lead to dramatical-
ly increased sample sizes (21, 25, 28). The experi-
menter must bear in mind that the observed treatment
effect is a random variable, and careless plug-in of
apparent large or small effects may have drastic con-
sequences in terms of sample size. One alternative
would be not to decrease the pre-planned sample
size, but rather to insert an additional interim analy-
sis (see below), and to set an upper limit to the sam-
ple size increase.
To gain advantage from interim analyses, some au-
thors have also proposed a general framework to in-
corporate adaptive data-driven changes in sample
size, number and timing of interim analyses, as well
as alpha-spending function (16, 29). This framework
allows design modifications at any time, and not on-
ly at pre-specified times. One may add an interim
analysis if unblinded data indicate a high chance of
obtaining a decision, or drop the next interim analy-
sis if they do not. The methods are, however, rather
complex and beyond the scope of this article.
Other adaptations considered in the literature con-
cerned redefining a dose range (30), dropping or
adding treatment arms (31, 32), or selecting a more
appropriate test statistic, for example in cases of non-
proportional hazards for survival data or to adjust a
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test on a variable that was not part of the original pro-
tocol (33, 34). Another proposed adaptation is to se-
lect, add or even change endpoints (35, 36). While it
may be conceivable to discard one of the endpoints
to be combined in a composite score on the basis of
poor reproducibility, for example, or to modify the
hierarchy of a multiple testing procedure, it is diffi-
cult to advise changing an endpoint. Modifying the
main endpoint of a trial will almost inevitably cast
reasonable doubt on the trial conclusions, and obvi-
ously indicate poor trial planning.
This list of adaptations is not exhaustive, and any rel-
evant design modification may be considered. The
critical point is to preserve the trial’s integrity and
credibility. In particular, one should be careful when
using parameters estimated at an interim analysis, as
the main risk is that of modifying a good protocol on
the basis of results observed on a possibly small
number of patients. Also, as a combination test al-
lows conclusion of the intersection null hypothesis,
one has to verify that such a hypothesis makes sense
before adapting it. Nevertheless, protocol amend-
ments are common practice, including dropping
treatment arms that are considered ineffective after
an interim analysis or on the basis of external evi-
dence, such as other clinical trials. In this respect,
flexible designs at least provide a framework for de-
signing adaptations with control of the overall type I
error rate.

Seamless phase II/III trials

Besides design modifications such as sample size re-
assessment, seamless phase II/III clinical trials are
among the most promising implementations of flexi-
ble designs (1).
Tr a d i t i o n a l l y, drug development consists of first
conducting a phase II trial, where the experimental
treatment is evaluated in terms of short-term safety
and eff i c a c y. For this purpose, several doses are of-
ten compared to a control. When the phase II trial is
completed, its results are used to take a decision on
whether the drug development may be continued,
and which doses, targeted treatment effect, and so
on, should be used for a subsequent phase III trial.
The final analysis of efficacy relies on a long-term
clinical endpoint measured in the phase III trial on-

l y, ignoring the information from previous phase
t r i a l s .
Seamless phase II/III designs combine both a phase
II and a phase III into a single uninterrupted two-
stage study (37, 38). Figure 2 gives one possible
schematic representation of such a design. The first
stage corresponds to a phase II trial, where an early
endpoint is used for decision-making concerning the
second stage (adaptation). For instance, one may use
the results of the interim analysis to decide whether
it is worth conducting a second stage, to select the
doses or a targeted subpopulation, for example, the
treatment effect, and the sample size for the second
stage. After design adaptation, the second stage cor-
responds to a phase III trial on the selected doses,
with a terminal endpoint. However, patients accrued
during the first-stage are still followed up, allowing
the evaluation of the terminal endpoint on the first-
stage sample. Some authors have even proposed
planning the second stage itself as a flexible trial,
with, for example, sample size reassessment on the
basis of the results of long-term follow up of the
phase II patients (37). The final analysis thus in-
cludes patients from both stages, and is performed in
order to control the overall type I error rate at a pre-
specified level regardless of the adaptations per-
formed at the interim analysis, as in other flexible de-
signs described in previous sections. The use of well-
conducted seamless phase II/III designs offers sever-
al advantages. First, it allows reduction of the time of
drug development, by shortening the interval be-
tween the separate phases. As the study is initially
planned as a whole, the time for obtaining approval
from institutional review boards may be shortened,
although adaptations also need approval. Moreover,
there is no interruption of patient enrolment. Second,
it increases the value of the information contributed
by the phase II study, it needs fewer patients, and it
cuts costs by integrating the evidence from both
stages. Last, long-term safety data may be available
earlier, resulting from additional follow up of phase
II patients.
Such combined phase II/III trials are confirmatory
trials and are a sensible way to meet the expectations
of pharmaceutical companies, health authorities,
physicians, but above all patients, with regard to the
possibility of making effective treatments available
as early as possible. But planning and implementing
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seamless phase II/III trials is also a challenge for
statisticians and clinical teams. While the theory al-
lows control of the overall type I error for a wide
range of design adaptations, it remains important to
assess the impact of these adaptations on the treat-
ment effect estimates and on the operational charac-
teristics of the trial (39).

Statistical methods and properties

In this section, we briefly give some insight into the
statistical methods used to implement flexible de-
signs, and discuss some issues concerning estimation
following a flexible trial.

Statistical approaches for flexible designs

When introducing the principles of flexible designs in
section 2, we relied on the notion of combination tests.
Early works on flexible designs used combination of
p-values (4), while others have proposed combination
of normal deviates rather than p-values (7). Even

though these practical methods are different, both are
combination tests. Another method rests on the condi-
tional error function (5), which, however, is also equiv-
alent to a combination test (40). Of note, all these test
statistics are different from the usual cumulative se-
quential test statistics used in group sequential trials.

Combining p-values
Recursive combination tests have been quite exten-
sively studied by Brannath et al. (19). To combine p-
values, the combination function C(p1,p2) has to be
increasing in both arguments, strictly increasing in at
least one, and left-continuous in p2 for p1 ∈ (α1;α0)
and p2 ∈ [0; 1]. Moreover, p1 and p2 have to be 
p-clud, i.e. PrH0 (p1 ≤ α) ≤ α and PrH0 (p2 ≤ αp1)
≤ α, α ∈ [0, 1]. In practice, the p-clud condition
may not be easy to determine, but independent and
uniformly distributed p1 and p2 is a sufficient condi-
tion to obtain it.
Several combination functions may be considered. In
their initial report, Bauer and Köhne used Fisher’s
product criterion C(p1,p2) = p1 × p2, and this choice
has been one of the most frequent in the subsequent
literature (4). Recently, a sum of p-values instead of
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Figure 2. Schematic representation of a phase II/III seamless trial. The first stage corresponds to phase II, with additional
follow up also used at the second stage, which corresponds to phase III. Stars (✶) denote times of analysis and grey hatched
boxes the analyses that may be performed.
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a product has been considered (41). For Fisher’s
combination test, the critical value for the combina-
tion test is easily obtained using 

p1p2 ≤ cα2 = exp (–0.5χ2
4,1–α2).

The global level of the test is given by 

P r (p1 ≤ α1) + Pr(C(p1,p2) ≤ cα2, α1 < p1 ≤ α0) = α,
H0 H0

which turns out to be 

α0 1

α1 + ∫ ∫ I[C(x,y) ≤ cα2]dxdy = α
α1 0

when p1 and p2 are independent and uniformly dis-
tributed.
Last, overall p-values have been derived for recur-
sive combination tests, but there are several defini-
tions and not all may be easy to compute in practice
(19, 42).

Weighted sum of normal deviates
If the test statistics used at each stage are independ-
ent standard normal deviates Zi, Lehmacher and
Wassmer have proposed a combination function of
the form (7) 

Z = w1Z1 + w2Z2,

where weights wi ∈ (0, 1) verify w2
1 + w2

2 = 1. For a
two-group balanced trial in every stage and with 

known equal variances, weights wi = a r e

optimal in the sense that, without sample size modi-
fication, the combination test is equal to the uniform-
ly most powerful test.
As the combination rule has to be fixed in advance,
one may use the original weights wi for combining
stage-wise Zi despite sample size modification, and
this has been shown to control for the overall type I
error rate α (7). In such a case, the weights, howev-
er, are suboptimal and may lead to a loss of power as
compared to a fixed sample test with the actual (and
not the original) sample size. Bauer and Köhne also
reported a small loss of power calculations with
Fisher’s product criterion, as compared to the uni-
formly most powerful test (4).
Remarking that Zi = Φ–1 (1 – pi), where Φ (.) denotes

the cumulative distribution function of the standard
normal distribution, the combination test described
here can be expressed in terms of combination of p-
values as: 

C(p1,p2) = 1 – Φ[w1Φ–1 (1 – p1) + w2Φ–1 (1 – p2)].

The final critical boundary of the test is computed to
ensure 

P r (Z1 ≥ zα1) + Pr(za0 ≤ Z1 < zα1, Z ≥ za2) = α,
H0 H0

zα being the (1 – α)-quantile of the standard normal
distribution.

Conditional error function
Another concept has been used to design flexible tri-
als (5). Let us consider that the test statistic obtained
at stage 1 is Z1, with probability density function
Φ(z1). The conditional error function is any pre-spec-
ified increasing (if larger values of Z1 indicate evi-
dence against H0) function A(z) with range [0, 1], and
satisfying

∫
+∞

–∞
A(z)Φ(z)dz = α.

At the second stage, any test statistic independent of
Z1 and performed at the level A(z1) will allow control
of the overall type I error rate. The conditional error
function thus represents the probability of a type I er-
ror at the final stage, given observation of Z1 = z1 at
the interim analysis.
Several conditional error functions have been con-
sidered in the literature, and little is known about op-
timal choice of the conditional error function (5, 40).
For two-stage designs, Fisher’s combination test has
been compared to the circular conditional error func-
tion presented by Proschan and Hunsberger (5), and
power and sample sizes were found to be almost
identical (43). The combination tests described in
previous sections may also be expressed in terms of
conditional error functions. For instance, the one pre-
sented in previous section corresponds to the so-
called linear conditional error function: 

0 if z1 < zα0

A(z1) = {1 – Φ (– – – – – – – – – – – – – – – ––) if z0 ≤ z1 < zα1

1 if z1 > zα1
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Estimation

The methodology of flexible designs rests on control
of the type I error rate while allowing design adapta-
tions. Methods have thus focused more on statistical
testing than on estimation. While the literature of
flexible designs has increased in recent years and be-
come highly developed, estimation remains a chal-
lenging issue, both from a theoretical and a practical
point of view. Currently, several estimators are avail-
able, which are mostly biased. The experimenter is
left with the choice of one of these estimators,
whereas biased estimation may be difficult to inter-
pret. For reviews on estimation in flexible designs,
see (44, 45).

Point estimates
When sample size is re-evaluated at the interim
analysis, the maximum likelihood estimator is typi-
cally mean biased. The bias depends on the alterna-
tive, the stopping rule, and the adaptation rule, and is
therefore practically unknown. The possibility of
early stopping also produces mean bias estimates,
with positive or negative bias according to the situa-
tion. For instance, stopping for early rejection typi-
cally produces positively mean biased estimates,
while stopping for futility produces negatively bi-
ased estimates. A limit for the mean bias has been de-
rived, which is 40% of the standard error of the first-
stage estimate; this limit may be improved if condi-
tions are added on minimum and maximum sample
sizes (46).
Some mean unbiased estimators have also been con-
sidered, but they use only part of the data and can
show very large mean square errors. More reason-
able mean square errors have been obtained with me-
dian unbiased estimators, that have smaller bias than
the maximum likelihood estimator and comparable
mean square errors. Both perform similarly well in
terms of mean square error, as long as sample size
adaptations are not too extreme (44).

Confidence intervals
Numerous controversial definitions of confidence in-
tervals for flexible designs are available, and these
can differ considerably depending on the possibility
of early stopping or not. Among others, repeated
confidence intervals and monotone confidence inter-

vals have been proposed (19). Confidence intervals
can be based on the weighted z-score test statisctics
or on the likelihood ratio test statistics, the former
being centred on the median unbiased estimate. All
methods may be adapted to ensure that the flexible
confidence interval includes the maximum likeli-
hood estimate, or even the whole naive confidence
interval (i.e. not adjusted to account for the sequen-
tial adaptive procedure). To date, there have been-
very few works aimed at comparing the different
methods, but more detailed discussion can be found
in the references cited above (44, 45).

Paths for future research 

Flexible designs are an extension of group sequential
designs. By flexibility, we mean the possibility of de-
sign adaptations using all possible sources of infor-
mation, at the time of planned or unplanned interim
analyses. In general, flexible designs have been
shown to be inefficient as compared to group sequen-
tial designs (47). This is, however, the price to be
paid for having the possibility of re-planning the on-
going trial. The need for adaptivity thus has to be
crucial if one is to opt for a flexible design and not a
traditional group sequential trial. This may be the
case when using internal pilot studies, when nui-
sance parameters are particularly difficult to antici-
pate, or when several drug development phases are
combined, as in a phase II/III seamless trial.
Advantages of adaptive designs are recognised for
early-phase trials, but more debated for phase III tri-
als (2). Pro-flexible trials insist on the maximum re-
ductions that can be achieved, in terms of exposed
patients and total costs of drug development, while
shortening the time to decision making. For instance
if an interim analysis shows that the probability of fi-
nal rejection is low because the variance was under-
estimated at the trial planning stage, it may be worth
deciding to increase the sample size instead of con-
tinuing the present trial, and then setting up a new
one with the right variance. Flexible designs make it
possible to allocate resources on the basis of early
data, and therefore to reduce the risks of the entire
clinical programme. If the number of patients does
not necessarily have to be lower as compared to a
group sequential design, combined phase II/III trials
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usually require fewer patients than separate trials. It
has also been underlined that adaptive designs can
allow the targeting of subsets of patients who may
benefit from the experimental treatment, using, for
example, genomic or proteomic markers. At least the
flexible trial methodology provides a safe theoretical
framework (in terms of control of the type I error
rate) for  common practice protocol amendments.
On the contrary, detractors of adaptive designs
point out their vulnerability to unblinding and bias,
even though this also applies to a lesser extent to
group sequential designs. In fact, all limitations of
group sequential trials may also apply to flexible
designs. It has also been argued that flexible de-
signs over-emphasise statistical significance over
clinical significance. Combination tests can lead to
absurd results because of different weighting of
equally informative observations (48). Examples
may be found where the hypothesis µ ≤ 0 is reject-
ed even when the average of observations is nega-
tive. There are, however, methods to overcome this
problem, such as the dual test, where the null hy-
pothesis is rejected if both the combination test and
the naive test are significant at the pre-specified
level (14). From a practical point of view, flexible
designs complicate the trial’s logistics, and the need
for decisions on whether or not to adapt the design
may ultimately increase the role of data and safety
monitoring boards (DSMBs). It is not certain that
these boards are ready to assume such increased re-
s p o n s i b i l i t y, or that trial sponsors are ready to trans-
fer the responsibility for taking important decisions.
One solution could be to have representatives of the
s p o n s o r, who are not implicated in the particular tri-
al, in the DSMBs, but this also needs further discus-
s i o n .
While the methodology is already quite developed,
adaptive designs are still a young and challenging
area of clinical trials. From a statistical point of view,
we have already underlined that estimation remains
quite controversial, and solutions are still awaited.
Other issues concern survival data analysis. Flexible
designs are often seen as better suited for trials with
immediately available endpoints. However, many
trials are conducted over very long time periods in
fields like cancer, with time-to-event endpoints.
These trials are likely to benefit from the possibility
of design adaptation, because misspecification of

nuisance parameters would have dramatic conse-
quences, because knowledge about the disease is
more likely to be modified over long periods than
over short periods of time, and because these fields
are also the ones in which genomics and proteomics
research, to find targeted therapies, is most advanced
(21). If flexible designs can be used for survival da-
ta exploiting the independent increments property of
log-rank statistics (21, 49), it has been argued that the
use of information on covariables or surrogate end-
points of patients who did not fail at the interim
analysis is not permissible since it might not be inde-
pendent of the failure times observed at the second
stage (50). This stresses the question of flexible de-
signs with dependent data, which may also arise in
phase II/III seamless trials. Recent work has been de-
voted to this issue, and solutions may be found, al-
beit at the cost of less simple calculations (42). This
remains, nevertheless, one of the most challenging
aspects of flexible designs.
From a more practical point of view, many methods
are available, and it is not easy to know which one to
choose. Although a certain number of adaptive or
flexible designs have been successfully conducted
and published in the medical literature (51), we be-
lieve that the more applications are published, the
simpler it will become to plan new adaptive trials. In
particular, only experience can help the community
to set up practical guidelines. Moreover, this would
help disseminate the methodology and show that
there are situations in which adaptive designs are
useful. Using adaptive designs also leads to changes
in the way statisticians and clinical teams interact for
trial planning. The role of simulations may be in-
creased at that stage, to study different adaptation
scenarios for example. In general, using adaptive de-
signs increases the need for efficient infrastructures
for data monitoring and reviewing.
Adaptive designs are most efficient as part of an
adaptive drug development strategy rather than as
simple isolated flexible trials. When using an adap-
tive design, it is fundamental to preserve the credibil-
ity of the trial and adaptations should be designed
thoroughly. In any case, adaptive designs are not a
convenient means of rescuing poorly planned trials.
On the contrary, planning and conducting a flexible
trial is more demanding, and may imply new tasks
for all the teams involved.
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