
Introduction

The real-time polymerase chain reaction (PCR) is a

molecular technique widely used for the quantifica-

tion of nucleic acids in a broad range of clinical and

research applications including the measurement of

gene dosage, detection of residual disease in haema-

tological malignancies and detection of bacterial and

viral infection (1). The real-time PCR typically em-

ploys fluorescent probes which generate a signal that

accumulates during PCR cycling in a manner propor-

tional to the concentration of amplification products.

In real-time PCR data analysis, the cycle threshold

(ct) method is currently the gold standard and, even

though we are aware that alternative methods have

been suggested (2), the ct is the method we will focus

on in this study, as it is based on an assumption of

equal PCR efficiency in all reactions. 

Absolute quantification of target nucleic acids can be

achieved using a standard curve, which is generated

by amplifying known amounts of nucleic acid. To

construct the standard curve a set of 10-fold dilutions

of a positive control template is used as standard. By

means of  a technique known as “inverse regression”,

the standard curve is used as a “calibrator” to esti-

mate the unknown nucleic acid concentration in the

sample under examination. As in any titration, eval-

uating the uncertainty in the estimated concentration
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Summary
Objectives. The aim of this study was to evaluate, in the context of absolute real-time polymerase chain reaction (PCR)
analysis, four bootstrap methods of computing confidence intervals for the target nucleic acid concentration.
Methods. Starting from real data, 500 Monte Carlo simulations were implemented under the assumption of identically and
independently normally distributed errors for two specified values of standard deviation and for four fixed true concentra-
tion values. For each data set 95% confidence intervals of the true concentration were computed by means of the Delta
method and by applying four different bootstrap methods: standard bootstrap, percentile bootstrap, bias corrected bootstrap
and bootstrap-t.    
Results. Both the Delta method and the bootstrap-t method provided confidence intervals with acceptable coverage prob-
ability for the whole set of tested cases. On the contrary, the other bootstrap methods gave confidence intervals falling out-
side the coverage acceptance range in ten cases. In all cases the median and the inter-quartile range of the width distribu-
tions of the confidence intervals for the Delta and bootstrap-t methods were similar and slightly greater than for the re-
maining ones. 
Conclusions. The results showed that the performances of the Delta method and the bootstrap-t are comparable in the
framework of absolute real-time PCR quantification. 
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is critical for interpreting the data and optimizing the
experimental procedures. 
In a previous paper (3) two of us (PV and EM) advo-
cated the use of Fieller’s  theorem (4) to estimate the
confidence interval for nucleic acid concentration by
real-time PCR. In addition to the Fieller’s theorem,
the Delta method (5) is also commonly used, in bio-
chemical applications, to compute confidence inter-
vals in inverse calibrations. More recently, in a tuto-
rial paper (6), the relationship between these two
methods was debated and their geometrical interpre-
tation was shown. The paper concluded that, from a
practical viewpoint, in real-time PCR quantification
the two methods give overlapping results.
Alternatively, some authors [for example Bonate (7)
and  Jones and Rocke (8)] suggested using the boot-
strapping approach to provide confidence intervals in
inverse calibration settings.
In the context of absolute real-time PCR quantifica-
tion the aim of the present paper was to evaluate the
performance, in computing confidence intervals, of
four bootstrap methods by comparing their coverage
and width with the coverage and width provided by
the Delta method. Starting from real data this was
done using Monte Carlo simulations under the as-
sumption of identically and independently normally
distributed errors.

Material and Methods

Background models

The basic equation describing real-time PCR kinetics
is:

Nc = N0Ec [1]

where Nc is the template concentration at cycle c, N0

is the starting template concentration and E is the
amplification efficiency. The latter can be thought of
as the yield of the amplification reaction and two is
its ideal value, corresponding to a yield of 100%: in
this case every molecule is duplicated at each cycle
so that the template concentration at cycle c would
be twice the template concentration at cycle c – 1.
By taking the common logarithm, equation 1 be-
comes:

Log(Nc) = Log(N0) + c[Log(E)] [2]

To establish a direct connection between the above
relation and the standard dilutions it is useful to
rewrite equation 2 as:

[3] 

where the subscripts t and s mean threshold and stan-
dard dilution, respectively, so that cts identifies, for
each standard dilution, the fractional cycle where a
threshold amount of amplified nucleic acid (Nct) is
produced.
Equation 3 describes the linear relationship between
the cts values (dependent variable) and the logarithm
of the known starting concentration of the standard
dilutions (independent variable), with the intercept

and the slope                    . The

straight line in equation 3 represents the so-called
standard curve, used as calibrator to estimate the un-
known nucleic acid concentrations of the different
samples to be tested.
The statistical model corresponding to the standard
curve is:

yij = β0 + β1xi + εij [4]

where yij specifies the value of ct measured for the j-
th replication (j=1,2,…,Ji) at the i-th standard dilu-
tion (i=1,2,…,I), xi defines the logarithm of the start-
ing nucleic acid concentration of the i-th standard di-
lution and εij is the random component assumed to be
identically and independently normally distributed
with mean zero and constant error variance σ2. The
estimates b0 and b1 of β0 and β1 respectively are ob-
tained by the ordinary least squared method (OLS).
The value of interest in a real-time PCR experiment
is the logarithm of the unknown nucleic acid concen-
tration in the sample under investigation. The latter
(x0) is usually estimated by resorting to the following
inverse regression:

[5]

where –yy0 is the mean of K replicated values of ct [i.e.
ctk = yk, (k=1,2,….K)] measured for the sample under
investigation. 
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Delta method 

The Delta method provides an approximate variance
of the ratio of random variables based on a first-or-
der Taylor series expansion (5). Thus, the variance of
x̂0 is estimated as:

[6]

where                                    is the estimated error

variance of the model in equation 4 with

degrees of freedom,                         and

are the sum of squares and the mean of the xi values,
respectively. The limits of the 100 (1 – α)% confi-
dence interval of x0 can be written as:

[7]

where, tf;1-α/2 is the critical value corresponding to a
prefixed 100(1 – α/2)% level of the Student’s t-dis-
tribution with f degrees of freedom. 

Simulation plan

The structure of the Monte Carlo simulation scheme
mimicked the design adopted in a European External
Quality Assessment (EQA) programme for quantita-
tive real-time PCR assays (9,10). Briefly, the stan-
dard curve was based on five standard dilutions (I=5)
containing 10, 102, 103, 104, 105 copies/5 μL, respec-
tively. Three replicates of ct were assayed for each
standard dilution (Ji=3, for i=1,2,…,5) as well as for
the unknown concentration sample (K=3).
The simulation starting value for β1 was -3.637 cor-
responding to the median value of the b1 distribution
obtained from the data of the participants in the
abovementioned EQA programme. The starting val-
ue for β0 was 43.814 pertaining to the laboratory
whose b1 was the median value. Note that the effi-
ciency corresponding to β1 is E=1.88, slightly lower
than the ideal value. 
Following the linear regression model in equation 4,
M independent simulated data sets were obtained by

considering two different scenarios for generating
random errors (εij): in the first the values of εij were
generated from a normal distribution with μ=0 and
σ=0.2, whereas in the second the values of εij were
generated from a normal distribution with μ=0 and
σ=0.7. These two σ values corresponded approxi-
mately to the 10th and 90th centiles respectively of the
distribution of the estimated standard deviation of
the EQA participants.
As regards the unknown sample, four different val-
ues of the true concentration x0 were fixed as fol-
lows: x1=1.5, x2=2.5, x3=3.5 and x4=4.5. These con-
centrations correspond to the middle points between
two consecutive standard dilutions.
Owing to the structure of the design, for each value
of x0 a specific data set of 18 observations was sim-
ulated. First, 18 random numbers were generated, 15
for the five standard dilutions (εij) and three for the
unknown sample (εk), from each of the two normal
distributions considered. Then the simulated ct val-
ues (yij or y0k) were computed as follows: yij = β0 +
β1xi + εij for the standard dilutions and y0k = β0 + β1x0

+ εk for the unknown sample considered. Random
numbers were obtained using the RANNOR function
of the SAS® package (11). The computer clock was
used to specify seed values. In detail, by using differ-
ent starting seeds for the eight different scenarios and
the same seed within each scenario M=500 data sets
were simulated for each scenario. In the worst case
(x0 =1.5) the level of accuracy (12) of the x0 estimate
corresponding to 500 simulations ranges between
0.2% and 0.8%, according to the two values of σ
considered, namely σ=0.2 and σ=0.7.
For each data set the standard curve was built and the
corresponding parameters (b0 and b1) were estimated
by the OLS. Using equations 5 and 7, the unknown
concentration estimate (x̂0) and the 100(1 – α)% con-
fidence interval of x0 were computed. 

Bootstrap resampling plan

Starting from each fitted standard curve 15 residu-
als (rij = yij – ŷi) were gathered and after each of
them had been multiplied by the adjustment factor
√⎯⎯⎯⎯⎯⎯⎯⎯n/(n – h) the corresponding ~rij residuals were ob-
tained, where h is the number of parameters (13).
Furthermore, for the unknown sample, after comput-

Bootstrap confidence intervals for real-time PCR

BIOMEDICAL STATISTICS AND CLINICAL EPIDEMIOLOGY 2008; 2 (2): 109-115 111

© C
IC

 E
DIZIO

NI IN
TERNAZIO

NALI



ing the three residuals rk = y0k – –y0 the corresponding
~rk were obtained by multiplying the rk residuals by
the adjustment factor √⎯⎯⎯⎯⎯⎯⎯3/(3 – 1). The whole set of 18
residuals became the components of the residuals
pool for the bootstrap resampling. Sampling with re-
placements from this pool gives the eighteen boot-
strap residuals (~rij

* and ~rk
*) for the computation of the

corresponding bootstrap data: yij
* = b0 + b1xi + ~rij

* for
the standard dilutions and y*

0k = –y0 + ~rk
* for the un-

known sample. The bootstrap standard curve param-
eters (b*

0 and b*
1) were estimated by the OLS. The

bootstrap estimate of x0 was computed as follows: 

where

The bootstrap resampling number was B=999 for
each simulation (14). 

Bootstrap confidence intervals

Four methods were considered for the computation
of bootstrap confidence intervals of x0: standard
bootstrap, percentile bootstrap, bias-corrected per-
centile bootstrap and bootstrap-t.   
The first method is based on the bootstrap standard
deviation of x̂0

* computed as:

where                            , so that the limits of the

100(1 – α)% standard bootstrap confidence interval
were:                                      and

, where z1-α/2 is the (1 – α/2)
centile of the standard normal distribution. 
The limits of the 100 (1 – α/2)% percentile bootstrap
confidence interval (PBx̂L

* and PBx̂U
*) were just the

100(α/2)th and 100(1 – α/2)th centile of the distribu-
tion of the 999 x̂0

* values.
The computation of the bias-corrected confidence in-
tervals implied:
– counting the number of times (d) that  x̂0

* <  x̂0;

– setting ẑ0 = o⎥–1(d/B), where o⎥–1(.) indicates the in-
verse of the cumulative distribution function of the
standard normal distribution;
– computing α1 = o⎥ (2ẑ0 + zα/2) and α2 = o⎥ (2ẑ0 + z1–α/2).
The 100α1

th and 100α2
th centiles of the x̂0

* distribution
were the bias-corrected bootstrap confidence limits
of x0 (BCx̂L

* and BCx̂U
*).

For the computation of the bootstrap-t confidence in-
terval the following pivotal statistic was computed
for each data set:

where, se (x̂0
*) was calculated as the square root of the

approximate variance of x̂0 (equation 6) using the
values obtained from each bootstrap dataset. From
the distribution of the t* values the 100(α/2)th and
100(1–α/2)th centiles were found and the lower and
upper limits of the bootstrap-t confidence intervals
were: 

and

Coverage assessment

The estimated coverage probability is the proportion
of M confidence intervals containing the true concen-
tration value. The coverage should be approximately
equal to the nominal coverage. A possible criterion for
acceptability of the coverage is that the estimated cov-
erage should not fall outside approximately two times
the standard error (SE) of the nominal coverage prob-
ability (p), SE(p)= √⎯⎯⎯⎯⎯⎯⎯⎯p(1–p)/M (12). 

Software

A specific code was developed in SAS® package
(11) to carry out data analysis.

Results

Table 1 reports the estimates of the coverage proba-
bility of the 95% confidence intervals for whole set
of adopted methods, for the two values of σ and for
the four values of x0: in total 40 cases. The symbol (°)
identified the cases in which the coverage was unsat-
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isfactory according to the adopted range of accept-
ance (93.1% and 96.9%). Both the Delta method and
the bootstrap-t provided confidence intervals with
acceptable coverage for the whole set of tested cases.
Furthermore, the coverage of the two methods was
similar and very close to the nominal one.
On the contrary the remaining bootstrap methods

gave confidence intervals falling outside the range of
acceptance in ten cases (Table 1). 
Table 2 reports descriptive statistics for interval
width distributions. In all cases the medians and the
inter-quartile ranges of the Delta method and the
bootstrap-t were very similar and slightly greater
than those of the remaining methods. 
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x0

Method
1.5 2.5 3.5 4.5

σ = 0.2 Delta 95.6 94.6 95.2 95.4
SB 94.8 91.6 (°) 92.8 (°) 94.0
PB 95.2 91.8 (°) 93.0 (°) 94.2
BC 95.2 91.6 (°) 93.0 (°) 94.2
BT 95.4 93.8 94.8 95.2

σ = 0.7 Delta 94.0 94.8 96.0 94.2
SB 94.2 93.2 94.8 92.6 (°)
PB 93.4 93.4 94.2 92.4 (°)
BC 93.0 (°) 93.2 94.2 92.4 (°)
BT 94.6 94.8 95.6 95.0

(°)=estimated coverage probability outside the adopted range of acceptance (93.1%, 96.9%).
x0=true concentration value.
SB=standard bootstrap.
PB=percentile bootstrap.
BC=bias-corrected percentile bootstrap.
BT=bootstrap-t.

Table1. Coverage probability estimates.

σ x0 method min median max IQR

0.2 1.5 Delta 0.0695 0.1599 0.2840 0.0435
SB 0.0743 0.1463 0.2340 0.0384
PB 0.0734 0.1460 0.2413 0.0387
BC 0.0727 0.1452 0.2404 0.0387
BT 0.0709 0.1597 0.2769 0.0469

2.5 Delta 0.0695 0.1521 0.2766 0.0433
SB 0.0638 0.1392 0.2285 0.0344
PB 0.0632 0.1390 0.2253 0.0344
BC 0.0638 0.1396 0.2240 0.0348
BT 0.0664 0.1507 0.2771 0.0430

3.5 Delta 0.0693 0.1471 0.2361 0.0379
SB 0.0690 0.1340 0.2023 0.0329
PB 0.0706 0.1336 0.1981 0.0324
BC 0.0708 0.1344 0.2031 0.0330
BT 0.0731 0.1462 0.2513 0.0384

4.5 Delta 0.0716 0.1591 0.2685 0.0453
SB 0.0726 0.1446 0.2300 0.0390
PB 0.0730 0.1455 0.2339 0.0388
BC 0.0721 0.1445 0.2323 0.0383
BT 0.0698 0.1587 0.2739 0.0455

Table 2. Interval width distributions: descriptive statistics.
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Concluding remarks

The results show that the performances of the boot-
strap-t and of the Delta method are comparable in the
context of quantitative real-time PCR assays. The
findings are coherent with those obtained by Jones
and Rocke (8) in a fictitious example of linear cali-
bration. 
One can argue that bootstrapping implies more com-
plicated and time-consuming computation than the
Delta method. However, as the accuracy of the delta
confidence interval depends on the asymptotic nor-
mality of x̂0 and this assumption may be questionable
in small samples like those currently used in PCR ex-
periments, the bootstrap-t method appears to offer a
reliable way of constructing a confidence interval
that does not depend on this assumption. 
Future investigations will evaluate the impact of pos-
sible heteroschedasticity on the construction of boot-
strap confidence intervals.
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