
Introduction

In survival analysis based on the well-known Cox’s
model (1), the hazard function for individual i is
written as 

[1]

where λ0 (t) is a baseline hazard function, Zi = Zi (t)
= [Zi1 (t),...,Zip (t)]T a vector of explanatory variables
and β ∈ RRp a vector of unknown parameters that de-
scribes the multiplicative effect of Zi on λ0 (t). 
In its original formulation this model implies that the
hazard ratio for any two individuals is independent
of time. Yet, quite often, this assumption of propor-
tional hazards is unrealistic and in contrast with the
empirical evidence, especially in medical research.
For example, the protective effect of a drug may di-
minish over time, or the increased hazard due to a
risk factor may vanish after some years. 
To inject flexibility into model [1], several non para-
metric procedures have been proposed for an extend-

ed Cox model with time-varying regression coeffi-
cients and possibly time-varying covariates, al-
though in this paper we will focus on modelling
time-dependent effects in one or more covariates, as-
suming Zi to be constant over time 

[2]

Some early examples are the methods based on re-
gression estimators proposed by Murphy and Senn
(2), Hess (3) and Abrahamowicz et al. (4). Different
estimators for β(t) have also been developed using
penalized partial likelihood (5-7) and local partial
likelihood (8-10) approaches. Alternatively, residuals
can be used to detect and model non proportionality,
as in (11-14). 
It can be noted that the vast literature available fo-
cuses mainly on estimating time-varying effects,
while less attention has been devoted to testing them
[see (15) for a data-driven smooth test related to our
proposal; section 6.2 of (16) and (17) for nice re-
views]. However, point estimates, no matter how
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good, are of little use without some indication of the
magnitude of random variation. 
Our aim here is to propose a flexible non parametric
test for proportional hazards having power that
adapts to the smoothness of the underlying function
β(t). To this end, we follow a residuals-based ap-
proach in which Schoenfeld residuals play a central
role. Our procedure is an adaptation to the present
setting of a multiple testing technique introduced by
Fromont and Laurent in (18). 
The outline of the paper is as follows: after an intro-
duction to the Schoenfeld residuals and their use in
checking and understanding proportional hazards,
we describe our testing procedure. An application to
the well-known Mayo liver disease data is then de-
scribed, before our final remarks. All the relevant
technical details are collected in the Appendix. 

Schoenfeld residuals and proportional
hazards testing

Schoenfeld in (19) introduced a class of residuals for
Cox’s model directly linked to the partial likelihood.
They are defined as follows: let ℜk be the risk set
corresponding to the observed failure time tk with k
∈ {1,...,d}, and β̂ a vector of estimated parameters.
Thus, when there are no tied event times, the
Schoenfeld residuals {rk}k are given by 

[3]

where Z(k) denotes the covariate vector for the indi-
vidual observed to fail in tk, and –z (β̂,tk) is just the
mean of Z over those subjects still at risk at tk

weighted by their normalized risk scores 

[4]

A Schoenfeld residual can be regarded as a distance
between the covariate vector of an individual observed
to fail in tk and the expected covariate vector, i.e. the
vector characterizing that patient, among those still at
risk in tk, who is expected to fail according to the Cox
model. From this perspective, Schoenfeld residuals re-
semble the classic definition of residuals. 

Some features of Schoenfeld residuals make them
especially suitable for diagnosing the presence of
time-dependent effects. For every deceased individ-
ual a vector of residuals is defined, one for each ex-
planatory variable; this makes it possible to check
each covariate separately and specifically for a pos-
sible time-varying effect. 
When proportionality holds true, Schoenfeld residu-
als have no systematic pattern over time and a
smoothed plot of the ℓ–th component rℓ,k of rk against
tk is expected to be centred about 0. This original pro-
posal was subsequently refined by several authors. 
Grambsch and Therneau (11) noted that spurious
time-dependent effects could be detected due to cor-
related covariates and proposed scaling Schoenfeld
residuals by their weighted covariance matrix (see
Appendix A for details). 
Taking rk

* as the scaled Schoenfeld residuals, the
same authors (11) showed that 

E(rk
*) + β̂ ≈ β(tk).                        [5]

This suggests that a smoothed plot of the ℓ–th com-
ponent r*

k,ℓ = r*
ℓ (tk) of r*

k against tk can be used not on-
ly to diagnose the presence of non proportionality for
covariate ℓ ∈ {1,...,p}, but also to reveal the form of
a possible time-varying effect. 
In other words, residuals can be scaled, smoothed
and added to the initial constant estimate to obtain a
crude estimate of β(t) in model [2]. This approach
has advantages over direct non parametric estimation
as, on the one hand, estimates are easier to calculate,
to interpret and to relate to the more restricted Cox
model estimate, and on the other, it is also the basis
for improved, consistent estimators like the one
based on iterated residuals proposed by Winnet and
Sasieni in (14). 
Thus, equation [5] is a powerful tool for exploring
and validating the proportionality assumption. Typi-
cally a line can be fitted to the plot and this can be
followed by a test for a zero slope; a non zero slope
is evidence against proportional hazards. Interesting-
ly, most of the tests for proportional hazards that
have been proposed in the literature are of the same
type: Rao efficient score tests of H0 : θ = 0 under the
model 

βℓ(t) = βℓ + θℓ (gℓ(t) – –gℓ), with
–gℓ = average ({gℓ(tk)}k), and ℓ ∈ {1,...,p}

[6]

for different choices of the time transform g(t). 
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The ability to “see” the test is clearly an advantage but
it comes with a few drawbacks. First of all, it can be
noticed that the weighted variance matrix used to scale
Schoenfeld residuals, being a weighted variance of the
covariates for individuals still at risk at tk, may become
unstable as individuals are removed from the risk set
ℜk because of death or censoring. A possible solution
is to control this instability in the estimate for late fail-
ure times (when the risk set is substantially reduced)
using a weighted smoother, as in (13). 
A more serious problem, however, is that there are
forms of non proportionality that the family of tests
discussed above may completely fail to detect. 
A simple example is a quadratic shape for β(t): it
might be apparent on the plot, but be totally missed by
the test of linear slope. To solve this issue we might
consider more general tests. For example, we might fit
a quadratic function to the plot and then conduct a two
degree of freedom test; or maybe consider a higher de-
gree fit with the associated test, but the point is that the
need to pick in advance an appropriate time transform
g(·) and a reasonable parametric model under the null
is, ultimately, unsatisfactory. Such a specification will
rarely be known a priori and the common practice of
basing the choice of a parametric function on residu-
als from the Cox model and of testing it using the
same data set is not correct, resulting in a double use
of sampling information. For this reason, we here sug-
gest recasting the problem in a non parametric regres-
sion framework, modelling the scaled residuals as an
unknown smooth function f(·) plus (bounded) noise: 

r*
ℓ (t) = f(t) + ε(t),

and then applying a suitable goodness-of-fit proce-
dure to test H0 : f ≡ f0 against H1 : f ≠ f0. Given the na-
ture of the data, it seems reasonable to look for a test
that has power only against smooth alternatives and
that ideally is adaptive to the (unknown) smoothness
of the underlying function [see (20)]. The next sec-
tion describes such a test. 

A goodness-of-fit test

As mentioned in the previous section, the framework
we shall work with in this paper is the usual non

parametric regression problem with random design.
In this model we observe an i.i.d. sample D1:d = {Dk

= (Tk,Yk)}k∈{1...d} from the distribution of a vector D =
(T,Y) described structurally as 

Y = f(T) + ε,

where T and ε denote respectively the design vari-
able and the stochastic error term. Notice that in our
case Yk = r*

ℓ(tk) for some ℓ ∈ {1,...,p} of interest. Our
aim is to test H0 : f ≡ f0 against H1 : f ≠ f0 where usu-
ally f0 = 0. In this section we will provide a qualita-
tive description of our method, while leaving the de-
tails to Appendix B. 
In general, to tackle a testing problem effectively we
need to: 
1. choose a suitable distance1, say d(·,·), to measure

departures of the parameter of interest f(·) from the
null “guess” f0(·);

2. define a test statistic based on a nicely behaved es-
timator d̂ of d;

3. find a way of quantifying the random fluctuations
of d̂ in order to control the error rates of the test.

In our setting the parameter of interest is the un-
known function f(·), thus one natural possibility is to
take 

but in this way we completely neglect the distortion
induced by the design that we assumed to be random
or, at least, non equispaced being induced by the ob-
served failure times {tk}k. To fix this, let GT (·) be the
distribution function of the design variable T, then
define 

[7]

Roughly speaking, d is the weighted version of ~d
with the weights given by the probability of observ-
ing any particular design value t. 
Now that we know how to measure deviations from
H0 in the population, we are left with the problem of
estimating this metric from the data. An intuitive op-
tion would be to estimate f first with an estimator f̂,
and then plug it in equation 7 obtaining as the test
statistic  d̂ = d (f̂,H0). Although feasible, this path is,
in a sense, rather cumbersome. To understand why,
let f0 be equal to zero on the whole domain. In this
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1 The function d does not need to be a distance in a technical sense. It is enough that, in the population, it takes on a unique and distinc-
tive value only when f ≡ f0.
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––––––––––––––––
2 The function d is actually a quadratic functional of f.
3 The level of the overall test has to be equal to a given α ∈ (0,1).

way, according to step 2 above, the quantity we
should really estimate is d (f,H0) = ⎢⎢f⎢⎢2

GT, a real non
negative number2, not a function! In addition we
would like to find an estimator d̂ capable of recover-
ing the complexity of the underlying function from
the data and exploiting this information to improve
on the power of the test whenever possible. 
To achieve all this we follow (18) and disassemble
the original level–α test in a sequence of “subtests”
of growing complexity for H0 : f = f0, rejecting the
“grand-null” if, for some of the tests in the collec-
tion, the hypothesis is rejected. Notice that all the
tests in the collection share the same null hypothesis;
it is the test statistic that varies in a controlled fash-
ion. 
More precisely, taking f0 = 0 once again, for each m
∈ {0,...,Μ}, the m–th subtest is characterized by the
following steps: 
• define a “probing set” Sm for f(·) such that Sm–1 ⊂ Sm

and S0 = {0};
• consider the projection ΠSm (f) of f(·) onto Sm;
• reject H0 : f = 0 if an estimator  d̂m of dm (f,H0) =

⎢⎢ΠSm (f)⎢⎢2
GT is greater than an appropriate quantile3.

The idea behind this procedure is relatively easy:
each probing set Sm captures some features of the
function f and by projecting we extract more and
more complex structures from f as m increases.
Clearly the choice of M is crucial and strictly linked
to how we build the sieve {Sm}m. In this regard, the
reader is invited to refer to the Appendix for further
comments. Here, instead, we have to settle one last
question: what kind of estimator  d̂m should we use at
each step, and consequently how can we quantify its
sampling distribution under the null? As we shall see
in Appendix B,  d̂m belongs to the class of U-statistics
and, rather luckily, some well-known results can be
applied to evaluate its variability [see (21)]. 

Application to Mayo liver disease data

To illustrate our proposal we consider well-known
primary biliary cirrhosis (PBC) data [see (22)] which
refer to a total of 418 patients followed until death or
censoring. The data come from a Mayo Clinic trial of
PBC of the liver, conducted between 1974 and 1984.
PBC is a progressive disease thought to be of an au-
toimmune origin; it is associated with an inflamma-
tory process that eventually leads to cirrhosis and the
death of the patient. We investigate the predictive ef-
fect on survival of the following covariates: albumin
(mg\Dl), bilirubin (mg\Dl), oedema (present\non
present), prothrombin time (seconds) and age
(years). In order to obtain a more stable fit, the loga-
rithmic transformation was applied to bilirubin and
prothrombin time, both the covariates showing an
extremely skew distribution Results from a standard
Cox regression model are reported in Table 1. 
All effects were clearly significantly different from
0. After fitting the Cox model, an appropriate inves-
tigation for departures from proportionality is recom-
mended. A smoothed plot of Schoenfeld residuals
against the observed failure times provides an initial
graphical representation. However any graphical
procedure, to be of real help, should be accompanied
by a measure of the empirical evidence against the
null hypothesis. We compare the adaptive test we
propose with two methods that are commonly used
in medical research. The first is a test based on scaled
Schoenfeld residuals that was introduced in 1994 by
Grambsch and Therneau (11) (GT). This method has
the advantage of being in agreement with the graph-
ical evaluation; however, belonging to the class of
Rao efficient score tests we discussed in section 2, it
may fail to detect non linear forms of non propor-
tionality. 

β exp(β) S.E. z p

Age 0.0382 1.039 0.00767 4.98 <0.001 
Albumin -0.7385 0.478 0.21029 -3.51 <0.001 
log(Bilirubin) 0.8975 2.454 0.08279 10.84 <0.001 
Oedema 0.6661 1.947 0.20635 3.23 0.001
log(Prothrombin time) 2.3314 10.293 0.77360 3.01 0.003

Table 1. Results for the fit of a five-parameter Cox model to the PBC data.
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A different approach is based on the introduction in-
to the Cox model of interactions between each co-
variate and a suitable function of time. We remark
that the specification of such a function, rarely
known in advance, cannot be based on the data set to
be analyzed. In order to avoid the choice of a specif-
ic functional form, Hess (3), in 1994, proposed the
use of restricted cubic splines (RCS). Implemented
as time-by-covariate interactions, standard methods
and statistical software can be used for testing re-
gression coefficients. In particular, a test for detect-
ing a time-dependent effect can be based on the per-
tinent set of parameters, adjusting for the appropriate
degrees of freedom. The disadvantage of this method
is that the researcher must choose the number and the
position of the knots, this choice being somewhat ar-
bitrary but, at the same time, influential on the final
result. We assumed three and five knots, located at
the percentiles of the failure time distribution; 25%,
50% and 75% in the former case, 10%, 25%, 50%,
75% and 90% in the latter. It must be noted that, as
the assumptions of a constant effect concern every
single covariate, separate tests should be done. In our
case this is not a serious issue; however, in the pres-
ence of several explanatory variables, a correction
for multiplicity might be necessary. 
The results of the different approaches are summa-
rized in Table 2. 
Only prothrombin time and the presence of oedema
showed a systematic departure from the assumption
of a constant effect.  
Figure 1 shows a plot of scaled Schoenfeld residuals
for prothrombin time versus observed failure times.
A spline-based non parametric estimate suggests that
prothrombin time leads to an initially increased risk
which wears off towards the end of the follow up.
Application of the proposed test in order to verify
whether this observed behaviour can still be consis-
tent with a constant hazard ratio, a p–value <0.001

confirms a significant departure from proportionali-
ty. A similar message comes from the other tests but
with considerably lower strength. 
A similar decaying effect is shown in Figure 2 for the
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GT RCS (3 knots) RCS (5 knots) Adaptive

Age 0.953 0.915 0.639 0.713
Albumin 0.783 0.942 0.772 0.901
log(Bilirubin) 0.269 0.286 0.002 0.117
Oedema 0.042 0.011 0.048 0.025
log(Prothrombin time) 0.003 0.005 0.022 < 0.001 

Table 2. p-values resulting from the different approaches.

Figure 1. PBC data, time-dependent coefficient plot for
prothrombin time.

Figure 2. PBC data, time-dependent coefficient plot for
oedema.
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presence of oedema even though the empirical evi-
dence appears to be less strong than in the previous
case. Again, the hypothesis of a time-varying effect
is supported by a p–value of 0.02, higher than 0.001
but still significant. 
The p–values from the four different methods in
Table 2 are of different magnitude but show a consis-
tent pattern. The only exception is a significant val-
ue for bilirubin when RCS are used, assuming five
knots. 
Note that the two tests based on RCS require a prelim-
inary estimate of the time-varying effects. Especially
when five knots are assumed, this approach may result
in a considerable amount of over-fit due to the inclu-
sion of unnecessary parameters for the possible time
dependence of each single covariate. Figure 3 shows
the spurious time-varying effect for the logarithmic
transformation of bilirubin. A p–value of 0.0021 sug-
gests a significant departure from proportionality.
However, none of the other tests confirms these results
and the estimated time-dependent effect is rather unre-
alistic from a clinical perspective. 
Finally, with respect to the GT test our proposal has
the advantage of being sensitive to non linear depar-
tures from proportional hazards, at the same time
guaranteeing a power that adapts to the smoothness
of the underlying time-dependent effect. 

Discussion

Testing for proportional hazards is a crucial problem
in many applied settings. In spite of this, the vast ma-

jority of the tests available are quite restrictive and
parametric in nature. The present paper tackles this
problem from a residuals-based point of view, recast-
ing it in a non parametric regression framework in
order to add flexibility to the usual techniques. The
result is an effective non parametric test of time-
varying effects that do not require new or demanding
computational tools and that is based on a procedure
having power that adapts to the smoothness of the
underlying function. 
The preliminary numerical study based on the PBC
data contained in section 4 suggests that our method
is on the right track but an extensive simulation study
coupled with a deeper theoretical understanding of
its performance in the present setting is strongly
needed. We will elaborate more on this in future re-
search, as well as considering other classes of resid-
uals [e.g. the iterated Schoenfeld introduced in (14)]
and of basis functions. We also hope to discuss the
power of the test against very smooth/convex alter-
natives, the most natural ones in a biomedical con-
text. 
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Appendix 

A. Scaled Schoenfeld residuals

Grambsch and Therneau (11) proposed scaling Schoenfeld
residuals in order to avoid the detection of spurious time-
dependent effects. Let 

∑(β,tk) = ∑ –wi (β,tk) · ∣∣Zi (tk) – –z (β,tk)∣∣22,               [8]

be the weighted variance matrix of Z at time tk. If β̂ de-
notes the coefficient from an ordinary fit of the Cox mod-
el, then we can define the scaled Schoenfeld residuals

{rk
*}k as follows 

rk
* = ∑–1 (β̂,tk)·rk. [9]

B. A goodness-of-fit test: technical details

We observe an i.i.d. sample D1:d = {Dk = (Tk,Yk)}k∈{1...d}

from the distribution of a vector D = (T,Y) described struc-
turally as 

Y = f (T) + ε,

for (T,ε) a random vector with E(ε∣T) = 0 and E(ε∣2T) < ∞
(almost certainly). Notice that in our case Yk = rℓ

* (tk) for
some ℓ ∈ {1,...,p} of interest. The regression function is
known to belong to a subset F of L2 ([0,1],GT), GT being
the marginal distribution of T. We do not assume that the
errors are normally distributed, and we do not assume that
T and ε are independent but, mainly for technical reasons,
we will assume, as in the majority of the current literature
on learning theory [see (23)], that ∣f (t) – y∣ is uniformly
bounded (almost everywhere) by a positive constant C. 
As is often the case in non parametric statistics, we could
cast this example into a problem of estimating a sequence
θ = [θ1,θ2,...] ∈ ℓ 2 of parameters by expanding f(·) on a
fixed orthonormal basis {ej}j∈NN of L2 ([0,1],GT). The Fouri-
er coefficients take the form 

and they can be estimated unbiasedly by  
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even though it does not appear particularly useful to move
directly in sequence space by considering [W1,W2,...] as the
observation vector. What we propose is a goodness-of-fit
test similar to the one introduced in (18) [see (24) for a nice
review of nonparametric lack-of-fit tests]. To describe it,
let f0(·) be some fixed function in L2([0,1],GT) and α ∈
(0,1). Now let us suppose that our goal is to build a level–α
test of the null hypothesis H0 : f ≡ f0 against the alternative
H1 : f ≠ f0 from the data {Di}i∈{1,...,d}. The test is based on the
estimation of 

Since the last (linear) term                         can be estimat-

ed easily by the empirical estimator  

the key problem is the estimation of the first term ∣∣f∣∣2L2(GT).
Adapting the arguments in (25), we can consider an at most
countable collection of linear subspaces of L2([0,1],GT) de-
noted by S = {Sm}m∈{1,...,M}. For all m ∈ {1,...,M}, let
{ej}j∈Im be some orthonormal basis of Sm. The estimator 

[10]

is a U-statistic of order two [see (21)] for

– where ∏Sm (·) denotes the orthogonal projection onto Sm

– with kernel 

Thus, for any m ∈ {1,...,M}, ∣∣f – f0∣∣2L2(GT) can be estimated
by 

[11]

Now that we have an estimator L̂d,m, let us denote by ld,m(u)

its 1 – u quantile under H0, and consider 

where Pf0
⊗d {·}is the law of the observations {D}i∈{1,...,d} un-

der the null hypothesis. Then introduce the test statistic Lα

defined by 

so that we reject the null whenever Lα is positive. 
This method, adapted to the regression setting using [9],
amounts to a multiple testing procedure. Indeed, for all m
∈ {1,...,M} , we construct a level–uα test by rejecting H0 :

f ≡ f0 if L̂d,m is greater than its (1 – uα) quantile under H0.
After this, we are left with a collection of tests and we de-
cide to reject H0 if, for some of the tests in the collection,
the hypothesis is rejected. In practice, the value of uα and
the quantile {ld,m(uα)}m are to be estimated by a wild boot-

strap procedure [see (26)] as explained in (27). 

Warped wavelets

Both the practical and theoretical performances of the pro-
posed test depend strongly on the orthogonal system we
adopt to generate the collection of linear subspaces {Sm}m.
In dealing with a density model, Fromont and Laurent (18),
consider a collection obtained by mixing spaces generated
by constant piecewise functions (Haar basis), scaling func-
tions from a wavelet basis, and, in the case of compactly
supported densities, a trigonometric polynomial. Clearly
these bases are not orthonormal in our weighted space
L2([0,1],GT), hence we have to consider other options. 
A basis that proved to fit perfectly in the present framework
is the so-called warped wavelet basis studied by Kerky-
acharian and Picard in (28, 29). The idea is as follows. For
a signal observed at some design points, Y(tk), k ∈ {1,...,2j),
if the design is regular (tk = k/2J), the standard wavelet de-
composition algorithm starts with sJ,k = 2J/2 Y (k/2J) which
approximates the scaling coefficient ∫ Y (t) o⎢J,k (t) dt, with o⎢J,k

(t) = 2J/2 o⎢ (2J – k) and o⎢ (·) the so-called scaling function or
father wavelet. Then the cascade algorithm is employed to
obtain the wavelet coefficients dj,k for j ≤ J, which in turn
are thresholded [see (30) for further information]. If the de-
sign is not regular, and we still employ the same algorithm,
then for a function H (·) such that H (k/2J) = tk, we have sJ,k

= 2J/2 Y (H (k/2J)). Essentially what we are doing is decom-
posing, with respect to a standard wavelet basis, the func-
tion Y (H(t)) or, if G ◦ H (t) ≡ t, the original function Y(x)
itself but with respect to a new warped basis {ψj,k

(G(·))}(j,k). In the regression setting, this means replacing
the standard wavelet expansion of the function f (·)  with its
expansion on the new basis {ψj,k (G(·))}(j,k), where G (·) is
adapting to the design: it may be the distribution function of
the design GT (·), or its estimation ĜT (·) when the distribu-
tion function is unknown. An appealing feature of this
method is that it does not need a new algorithm to be imple-
mented: just standard and widespread tools.
The rate of optimality and adaptivity of the procedure that
results from coupling warped wavelets and the test de-
scribed above can be found in (27) and depends  quite
heavily on how we choose J or, using the notation of sec-
tion 3, M. There are different ways of assessing this issue
[see (18) and (24)], but in practice we have seen that a val-
ue of M between 10 and 20 (depending on the sample size)
works reasonably well.

P. Brutti et al.

156 BIOMEDICAL STATISTICS AND CLINICAL EPIDEMIOLOGY 2008; 2 (2): 149-156

© C
IC

 E
DIZIO

NI IN
TERNAZIO

NALI




